

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 1

UniVerse Data Structures

with Report Writer and Mass Load

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 2

© 2007 Activant Solutions, Inc. All rights reserved. Unauthorized reproduction is a violation of
applicable law. Activant and the Activant logo, among others, are registered trademarks and/or
registered service marks of Activant Solutions, Inc. in the United States and other countries.
Eclipse is a trademark and/or a service mark of Activant Solutions, Inc. in the United States and
other countries. Other parties' trademarks or service marks are the property of their respective
owners and should be treated as such.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 3

Table of Contents

UniVerse Data Structures with Report Writer and Mass Load1

The UniVerse Database .. 7
What is a Database? .. 7
Frequently Asked Questions ... 8

Lesson 1 ...9
Accounts in Eclipse ..9

Eclipse Database Accounts ... 10
Lesson 2 ...11
Eclipse Files ..11

Valid Files in Eclipse .. 12
File Definition Maintenance ... 18
Maintenance Logging ... 19
File Definition Parameters .. 20
File Definition Maintenance for a Branch Specific File... 22

Lesson 3 ...24
Eclipse File Structure ..24

Eclipse File Structure.. 25
Attributes, Values, and Sub-Values .. 26
Viewing Raw Data in a File using TCL.. 28
LIST.ITEM ... 28
CT ... 28
DISP.. 28
SORT.ITEM.. 28
LIST .. 28
Dictionary Maintenance Summary Screen ... 31
Field Descriptions ... 33
Hot Keys ... 34
Example of Multi-Values in Dictionary Maintenance Summary ... 35
Example of Sub-Values in Dictionary Maintenance Summary.. 37
Branch Specific Data File Structure ... 40
PROD.BR File .. 40
PROD.CALC.BR File... 43

Lesson 4 ...45
Selecting and Listing Data in TCL...45

Using the Select Retrieve Verbs ... 46
Retrieve Sentence Operators... 47
Examples... 47
Multiple Selects .. 48
Wild Cards .. 49
Saved Lists .. 51
Listing Saved Data.. 52
Sorting... 55

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 4

Setting Common Data... 56
SET.COMMON.. 56
Activating Upper/Lower Case Sensitivity .. 58
UL Command.. 58

Lesson 5 ...60
Creating a Basic Report in Report Writer ..60

Report Writer .. 61
Designing Your Report ... 61
Painting Your Columns... 63
Using the Files Option on Report Writer.. 66
Advanced Search for Dictionaries in Other Files ... 70
How does the System Know what Files you have Access to?.. 72
Path Option on Report Writer ... 73
Column Data ... 77
Ignore Branch Hierarchy... 78
Break and Total... 80
Formatting Data .. 82

Lesson 6 ...85
Selecting and Sorting Your Report ..85

Report Writer/Mass Load Selection Screen.. 86
Compare To Column on the Select Screen ... 88
Comparing to a Dictionary Item ... 88
Comparing to a Text String... 89
Comparing to a Null Value ... 89
Comparing to a User-Defined Prompt .. 90
Sorting the Report ... 94
Report Writer Advanced Selection Screen ... 95
Report Driver: Running the Report.. 96

Lesson 7 ...99
Report Writer Options ..99

Report Writer Options Screen... 100
Creating Mailing Labels ... 102

Lesson 8 .. 107
Creating a Mass Load... 107

Mass Load... 108
Designing the Mass Load.. 110
Identifying the Data Type ... 112
Setting a Replacement Value .. 113
Leaving the Default/Set Value Field Blank .. 114
Replacing a Value with a Text String ... 115
Setting a Value to Null.. 118
Replacing a Value with another Dictionary ID Value .. 119
Replacing a Value with a Text String ... 120
Replacing a Value with a Concatenated Value... 121
Replacing a Value with a Numerical Expression ... 122
Word Wrapping .. 123

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 5

Lesson 9 .. 124
Dictionary Maintenance and I-Descriptors.. 124

Dictionary Maintenance.. 125
Dictionary Field Definitions ... 126
Hotkeys in Dictionary Maintenance Screen ... 129
Creating an I-Descriptor ... 131
Elements in an I-Descriptor Formula.. 132
Field Names .. 133
Operators... 134
Testing I-Descriptors .. 135

Lesson 10 .. 136
Creating Mathematical I-Descriptors ... 136

I-Descriptors that use a Mathematical Formula.. 137
Lesson 11 .. 141
Creating Internal Variable I-Descriptors... 141

Internal Variables.. 142
Using the @RECORD Variable ... 143
Using the @VM Variable ... 148

Lesson 12 .. 150
Creating Field Command I-Descriptors ... 150

FIELD Function.. 151
Using the PSUB File... 153

Lesson 13 .. 156
Creating TRANS Command I-Descriptors .. 156

TRANS Function .. 157
Using the ORDER.QUEUE File... 163
Using the PSUB File... 164
Using a Double TRANS Command.. 165
Using Notes Files.. 166

Lesson 14 .. 168
Basic Functions.. 168

Basic Functions... 169
LEN Function.. 169
IF THEN ELSE Operators .. 170
Using IF THEN ELSE to Fix a Problem .. 172
Examples of other IF THEN ELSE Dictionaries.. 173
Character Strip .. 174
STR Function .. 177
TRIM Function ... 178
Concatenation ... 179
OCONV Function ... 181
DCOUNT Function... 182

Lesson 15 .. 183
Using Subroutines ... 183

Subroutines ... 184

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 6

Subroutine Dictionary Examples .. 194
Appendix A .. 200
Answers to I-Descriptor Exercises .. 200

Lesson 12 .. 201
Lesson 13 .. 201
Lesson 14 .. 202

Appendix B .. 204
File Layouts for Release 7 .. 204

Entity File Layout ... 205
Product Dynam File Layout.. 208
Product File Layout... 209
Product Price File Layout ... 211
Searching for a Dictionary Item using TCL ... 211

Appendix C .. 212
File Layouts for Release 8 .. 212

Entity File Layout Release 8... 213
Product File Layout Release 8 .. 220
AR File Layout Release 8 ... 224
PSUB File Layout Release 8... 227

Appendix D .. 228
Subroutines .. 228
Dictionary Subroutines... 229

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 7

Overview

The UniVerse Database

What is a Database?

A database is a collection of related files. A file is a collection of related records. A
record is a collection of fields (attributes). A unique identifier (ID) or Key identifies each
record within the file. In multi-dimensional databases such as Universe, attributes can
also consist of multi-values and values can consist of sub-values.

Files
Files are collections of logically related items or records. For example, a file cabinet
contains folders, which in turn contain similar types of information. We all remember in
grade school that everything we did (good and bad) was recorded in our record. Well,
I’m sure they had a big filing cabinet filled with all of our records. At Eclipse, we have
files about our customers, the products our customer sell, and our vendors just to name a
few. Each of these files contains records made up of similar types of information. For
example, at Eclipse we have about 400 customers so as you might guess there are about
400 records in our customer file, each containing similar types of information. Examples
of that information would be the customer name, address, and phone number.

Records
A record is a collection of logically related attributes or fields. Therefore all of these 400
records in our customer file will contain a name of the customer, address, contacts,
billing information, and other information for that ONE customer. Each record in the
customer file is formatted in the exact same way. A record would be like a file within a
section of the file cabinet. Going back to the grade school example, each “file” (one per
student) would contain our grades, names, mom’s name, and so on.

Attributes
An attribute is simply a dividing mark between each data element. When you access the
data, you can quickly get to the field of data (attribute) you need. So the first attribute or
field in the customer file might be name, the second; address, the third; contacts, etc.

Record ID / Key
Each record in a file must have its own unique identifier. This is called the key to the
record. This key may be any combination of alphabetic, numeric, and most punctuation
characters. At Eclipse we mainly use ’.’ and ’~’ as punctuation characters. No spaces are
allowed in the key. Because of the uniqueness of the key, a programmer can pull data
very easily from a database to be used in any program they write. The ID for our grade
school records may have been our name or our social security number.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 8

Frequently Asked Questions

Question:

Why doesn’t Eclipse just use the old PICK systems approach and use one operating
system and database combined?

Answer:

There are many drawbacks to this old model. The main one being that very few hardware
platforms support the PICK operating system. The nice part about having a database like
UniVerse is that most of the customization you would do to port onto different platform
models is done by them. All databases and products that run on an OS (or hardware
platform) must get “certified” by that manufacturer, which can take a lot of time and
money. For Eclipse we just install the correct version of UniVerse on that OS and we’re
ready to go.

Question:

With all of the more popular databases (like Oracle) in the software industry, why did
Eclipse choose a seemingly smaller and unknown database like UniVerse as its database
provider?

Answer:

Oracle is a very high-end database platform with a very high price point. Oracle (and
almost every other relational database including Access) is also limited to the 2-
dimensional approach within a file and its record. The file contains records and the
records contain data across the columns.

The UniVerse database is very powerful and can easily handle up to 5 and 6 dimensions
within each record. Finally, the PICK database (and UniVerse in particular) is very easy
to maintain and optimize. We can easily add fields to files (tables) without changing the
whole file structure and our clients do not need a full-time Data Base Administrator to
make sure the database is “tuned” and running properly.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 9

Lesson 1
Accounts in Eclipse

Objectives
After you complete this lesson, you will understand:

• The Eclipse database accounts
• The Eclipse test/training account
• How to use the Eclipse University TrainS and TrainM accounts

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 10

Eclipse Database Accounts

The Eclipse database is called an account when it is installed on your system. In Eclipse
you can set up multiple accounts. These are datasets used for different purposes.

Your main account is the “live” account. You may also have a play account set up for
training purposes. Accounts are separate database occurrences with their own datasets.
Transactions you enter in one account have no effect on any other Eclipse account.

At Eclipse University, we have set up two Eclipse accounts. As you log in to the
“enterprise box” or “host,” you are prompted to pick one of the following accounts:

Account is set up for a…
TrainS single-branch company.
TrainM multi-branch company.

When selecting an account, remember:

• The sales sources and terminal are unique for that account.

• Transactions, such as a sales order, will appear only in the account you are

working in.

• A customer set up on one account, will not be added to any other account.

Exercise 1.1
1. Log into Eterm using the user ID assigned to you.

Your password at the Eclipse banner is the same as your Unix login ID.

How many account options are there when you log in?

2. Log into the TrainS account and access a customer record.

3. Log into the TrainM account and try accessing the same customer.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 11

Lesson 2
Eclipse Files

Objectives
After you complete this lesson, you will understand:

• Eclipse static, dynamic and branch specific files
• The Eclipse files most commonly used for running reports

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 12

Valid Files in Eclipse

The files listed in the Valid Files Control Maintenance record are Eclipse files that can
be used with the Report Writer and Mass Load programs. This list of files is maintained
by Eclipse and should not be modified.

Static files contain data that does not frequently change. The static data files most
commonly used in Report Writer and Mass Load include:

• ENTITY (contains Customer, Vendor, Branch, and Jobs/Ship-To information)
• PRODUCT (contains Stock, Non-stock, Special, and Catalog items)
• TAX.CODES
• BUY.LINE
• PRICE.LINE
• TERMS

Branch specific Files contain data that is branch and/or territory related and are linked to
a static file. Report writer reports and Mass Loads are not created directly using these
files. The parent file is used which will display dictionary items from these files.

• BUY.LINE.BR - Parent File is BUY.LINE
• ENTITY.BR – Parent File is ENTITY
• PRICE.LINE.BR – Parent File is PRICE.LINE
• PROCURE.GROUP.BR – Parent File is PROCURE.GROUP
• PROD.CALC.BR – Parent File is PRODUCT
• PROD.BR – Parent File is PRODUCT

Dynamic files contain transactional data and are continually changing. The dynamic data
files most commonly used in Report Writer and Mass Load include:

• ORDER.QUEUE (contains open Ledger transactions)
• PRINT.QUEUE (contains Ledger transactions that are queued to print or need to

be confirmed)
• AR
• PSUB
• CHECK.XREF

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 13

The PHYS File is dynamic and each time a Physical Control file is generated, a valid file
is created in UniVerse. These files should be purged periodically to conserve disk space.
The purge routine for this file is found on the Files Menu in the Merge/Purge option.

The four most utilized files for reporting purposes are:

• PRODUCT
• ENTITY
• AR
• PSUB

If you understand the file structure of these four files, you can utilize any other valid file
in Eclipse with ease.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 14

The following table lists many of the files used in the Eclipse system. We will discuss
these files and the type of information that is stored in the file. This table is a good way
to begin the process of getting to know your files.

File Name Contains…

ENTITY Name and address data for customer bill-tos, customer ship-tos, vendor pay-
tos, vendor ship-froms, and branches.

PRODUCT Product descriptions, groupings for the products, and pricing information.
PROD.PRICE and PROD.DYNAM support this file.

AR Summary information (header and totals, along with associated dates) for
closed ledger transactions, such as sales invoices, received purchase orders,
cash receipts postings, accounts payable invoices, and completed branch
transfers. The ID to the file is the Ledger#.Invoice#. Example: S1012302.002.
After transactions process, the summary information moves from the
ORDER.QUEUE file to the AR file. Transaction details move to the PSUB
file.

PSUB Line item detail for closed ledger transactions, such as sales invoices, received
purchase orders, transfers, and inventory adjustments. Each product on a
transaction creates 1 record in this file. For example, a sales invoice with 5
products creates 5 PSUB records. When a transaction is processed, the
detailed product information pertaining to the sales order moves from the
ORDERS.QUEUE file to the PSUB file.

ENTITY.BR This file contains branch specific data assigned to a customer/vendor. These
overrides take place in Customer /Vendor file maintenance under the
Additional Information, Branch Overrides option..

BUY.LINE Purchasing-related information, such as Buyer, Target Factor, Target Value,
Order Cycle Days, etc. The ID to the file is the Buy Line ID. Information from
the Buy Line Maintenance Screen is stored in this file. Products are linked to
this file when a buy line is assigned.

BUY.LINE.BR This file contains the branch specific / Territory specific data for the Buy line.

CONTACT Information entered on the Contact Maintenance screen.

COUNT.QUEUE List of products to be counted for each branch. Products that have a negative
on-hand, have been over-committed, or for which there was a manual
backorder on a shipped ticket go to this queue.

EDICT All Eclipse dictionary items for all files. The ID for records in the file is the
Filename~DictionaryName. Example: PRODUCT~DESC.

ENTITY.LOG Activity log information the System. This data is seen when accessing F2-S-
V

ENTITY.PN.IDS Customer / Vendor-Specific Part numbers. This file is populated only when
customers or vendors are assigned a part number or if the Customer Product
Demand Index from the AR/Utilities is run.

FAX.LOG Activity information about faxes that are sent out using the Eclipse system.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 15

File Name Contains…

GENLED G/L account and G/L report template records. This file does not contain G/L
balances. The GENLED file has three indexes that can be used in selecting
one type of record or the other: &INDEX& for G/L accounts only,
&INDEX&.GRP for template groups only, and &INDEX&.ALL for all
records.

GL.BUDGET Information entered on the GL Budget Maintenance screen.

INITIALS Information entered on the User Maintenance screen, such as
user name, title, menu, message tune, keywords, etc.

LEDGER All sales orders, cash receipts records, purchase orders, journal entries,
accounts payable invoices, and branch transfers. This file contains both
summary and detail line item information. The ID to the file is the sales
order#, purchase order#, etc. This file is rarely used in Report Writer. Detailed
information pertaining to shipped tickets should be retrieved from the PSUB
file. The following ledger-index files are used in Report Writer: AR,
ORDER.QUEUE, PRINT.QUEUE and PSUB.

LEDGER.LOG All change logs associated with transactions.

MATRIX All price matrix cells for the Sell Matrix and the Buy Matrix. It includes
matrix cells for customer classes, as well as customer-specific prices. The ID
to the file is BRANCH~Customer# or Class~Group or Product#~Effective
Date. Examples: ~C2~GWIRE~10354 or 1~4993~1684~10354
Use this file to create a report that will provide a list of matrix cells that are
about to expire.

MATRIX.DATES This file works in conjunction with the MATRIX file and stores information
such as expire dates, original and remaining quantities associated with the
matrix record found in the matrix file.

MAINT.LOG Audit change log information for any file for which maintenance logging has
been turned on.

MENUS All menus created in Eclipse.

MESSAGES All messages sent and received, until the individual users delete them.

MISC.DATA Items from various sources, including commission plans, product families and
manifest information, quote maintenance, user’s last run report, and customer-
created product groups from Web Commerce. The ID is the Type
Identifier~ID. Example: COMM~INSSLS.

ORDER.QUEUE Open Ledger transactions, such as open (not printed) sales orders, purchase
orders, and transfers. The ID to the file is the Ledger.ShipDate.GID. Example:
S1012300.10865.1 (GID =Generation ID) Once the order is processed the
information moves to the AR file and the detailed information moves to the
PSUB file.

OVERRIDES.LOG Manual overrides to sell and cost values on purchase orders, sales orders, or
transfers, if the Log Sell Price, Purchase Price and Cost Overrides Control
Maintenance record is set to yes. This file is used for reporting purposes only.

PRICE-GRP Information entered on the Buy / Sell Group Maintenance screen.

PRICE.LINE Data related to setting up price lines in Price Line Maintenance, including
default units of measure, Basis Field names, and Basis assignments. Products
are linked to this file when a price line is assigned to the product.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 16

File Name Contains…

PRICE.LINE.BR Information that is branch specific/territory specific for the PRICE.LINE file
are posted to this .br file.

PRINT.QUEUE Ledger transactions that are queued to print. This file is updated from the Print
Status prompt on the Status screen of SOE, POE, and TOE. A/P invoices
(checks) are also in this file. The ID to this file is the Ledger#.GID. Example:
S10112300.1 (GID = Generation ID).

PRINT.REVIEW Transactions in the Open Order Status Review Queue.

PROCURE.GROUP Information entered on the Procure Group Maintenance screen Products are
linked to this file by the procure group entered on the product record or its buy
line record.

PROCURE.GROUP.BR Branch specific information for Procurement Groups is stored in this .BR file.
Procurement group maintenance is found on the Maintenance menu in the
purchasing menu.

PROD.BR Branch specific / Territory specific information for the product file is stored in
this .BR file

PROD.CALC.BR Product branch specific/territory specific calculated data such as Average
Cost, Product Demand etc are stored in this .BR file

PROD.DYNAM Product on-hands, bin locations, average and last cost, and open orders for the
product in each branch. Links to the Product file.

PROD.LIFO All Product Lifo information, which is updated each time the Update routine
for the Lifo is run. This file exists only if your company does “Lifo”.

PROD.PRICE Prices and costs, such as List Price and Replacement cost, for each product.
The pricing information found on the Product Price Sheet Maintenance screen
is stored in this file. The product’s internal ID number is part of the key to this
file.

PRODUCT.NOTES Product notes entered using the Notes hot key in Product Maintenance. This
file has the same key as the product file therefore they are linked together.

PRODUCT.RENTAL Information entered on the Rental Product Maintenance screen.

QUAL.LOG Information generated through the Unquality Event Tracking entries.

RECURRING.JE Setup information for recurring journal entries.

REMINDER Reminder notes created in Customer or Vendor Maintenance. These notes can
also be created from the System Files Menu.

REPORTS List of reports generated within Eclipse and sent to the Hold file. The detailed
information regarding the reports is stored in the &HOLD& file. The date and
time stamp is included for the purging routine.

SCHEDULES Information entered in the Daily Scheduler.

SYSTEM.QUEUE All scheduled phantom processes. This file is dynamic in that the key to each
record changes each time the phantom processes an activity in the Phantom
Status screen.

TAX.CODES Information related to tax jurisdictions, such as tax rates and G/L posting
information.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 17

File Name Contains…

TERMS Customer and vendor-related terms entered on the Terms Maintenance screen.
It includes information on discount percents, discount days, due dates, service
charge percents, and service charge due dates. Customer maintenance, vendor
maintenance and sales transactions link to the Terms file.

TERRITORY Information entered on the Territory Maintenance screen.

TRACKING.LOG Call tracking information for all entities and users in Eclipse. The key to this
file is the Tracking ID number generated each time a tracker is created.

UD.WARRANTY Warranty information entered on a user-defined screen when creating returns
from your customers. This is a user-defined file, which contains limited
information. You can enhance this file, based on how you handle warranties.

WHSE.OP.QUEUE In-process RF transactions, until they are closed out.

WORK.MISC Data from different sources, including saved Report Writer layouts, saved
Mass Load layouts, Print Price Sheets, Manifest Information, Product
Ranking, E-mail Standard Forms, Order Entry Clipboard (Ctrl-F5), Detailed
Daily Schedules, Physical Generations, Cycle Count Generations (RDC), and
F10 Quick Access information.

ZIP Zip code information entered on the Zip Code Maintenance screen. Each
Eclipse system contains all US 5-digit postal codes, including city and state
information. This file also contains the tax jurisdiction codes.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 18

File Definition Maintenance

Files are created and maintained in the File Definition Maintenance screen located on
your System Files Menu. The system uses these parameters for indexing the file, sorting
the file for display lists, and updating the file.

Only the system administrator should edit file definition parameters.

Note: This class does not discuss the creation of User Defined Files in Eclipse.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 19

Maintenance Logging

Maintenance logging settings are used to collect changes that are made to files in the
system. If a user changed the outside sales person in a customer’s record you may want
to know when the change was made, who made the change and what the value was prior
to the change.

If a user is not prompted for their reason, chances are the maintenance logging is not
turned on or requiring a reason for the change.

Below is a table that describes the different prompts for maintenance logging:

Field Description

Maintenance
Logging

Indicate whether the system should log changes made to records in
this file, and what type of information to log. Press F10 and select one
of the following:

• Disabled – No maintenance logging occurs. This is the default
value.
• 1-Update Only – The log records the date and time of the
update.
• 2-Attr Only – The log records the date and time of the update
and the attribute that changed.
• 3-Attr W/Old Values – The log records the date and time of
the update, the attribute that changed, and the attribute's old value.
• 4-Save Deleted Items – In addition to recording the
information described in option 3, the system also stores deleted
records in the log.

Log Change
Reason

Indicate whether the system should prompt you to enter the reason for
change when you press Esc after making the change:

• Y – Displays the Reason for Change screen, which prompts
you to enter a reason.
• N – Does not prompt you to enter a reason for the change.
This is the default value.

If maintenance logging for this screen is disabled, skip this field.

Min Days Before
Purge

Enter the number of days to keep a log message before the system
can delete it.

Min # Logs to
Save

Enter the minimum number of messages the system should keep,
regardless of the number of days they have been in the log.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 20

File Definition Parameters

The following table describes the different parameters that can be set in the file definition
maintenance screen that deal with sorting, displaying and updating records within the file.

Field Description

Select Index
Dict ID

Defines the dictionary that indexes this file.

Enter the dictionary item to index the file. This is usually set to the name
of the key field, which Eclipse calls &INDEX&.

If the Parent File is ENTITY or PRODUCT, you get the indexing
capabilities of that file. Otherwise, you get the indexing capabilities
defined in the File Definition Maintenance screen. Leave this field blank
to select on record IDs.

Select SortBy
Dict ID

Defines how a menu table, which lists the results of a search, sorts
before it displays.

Leave this field blank to sort on record IDs. Otherwise, enter the
dictionary item by which to sort the file.

Disp Conv
Expr/Attb

Displays the conversion expression/attribute, which defines the text
describing the items displayed in a menu table. Menu tables list the
results of a search.

Leave this field blank to use the record ID. Otherwise, enter the name of
the file attribute to display or enter an expression using PICK correlative
commands.

Input Validation
Subr

Identifies the subroutine the system uses in validating input data. If
defined, the subroutine in this field overrides the subroutine in the Index
Dict ID field.

Pre-Index Conv
Subr

Identifies a conversion subroutine, which the system uses to remove
unnecessary characters in attributes before indexing them.

The only pre-index conversion subroutine the system uses is
DICT.SOUNDA.

Update
Validation

Identifies the subroutine to call for validating data in a record within the
file.

Update Subr Identifies the subroutine to call for running another program whenever a
user updates a record in this file.

For example, you can have a subroutine that sends a message to the
credit control manager whenever someone updates the credit controls
file.

 Note: The subroutine must adhere to Eclipse standards to work
properly.

Select Filter Identifies the subroutine to use to filter the displayed items.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 21

Subr

New ID
Verification

Indicates whether you can enter a new record using a user-defined
screen. Select one of the following options:

• No New – You cannot enter a new record from a user-defined
screen. This is the default value and the designation used for all
standard system files.
• Sequential – The system assigns a unique ID to a new record.
• Free Form – The user can assign a unique ID to a new record.

Keep File in
Sync with
Parent (Y/N)

Indicates whether to keep the Physical file and Parent file in sync.

For example, when set to Y, when you delete a record from the Parent
file, the system also deletes the record from the Physical file.

The only time one would need to set this flag is if a new file is being
created that is linked to a parent file and you want the two files to always
be in sync with each other.

Hot Sync (Y/N) Indicates whether this file should sync with the Hot Swap Server.

Prevent Mass
Load (Y/N)

Indicates whether the system prevents users from mass loading
information to this file. The default is N.

Note: Before you can change the setting of this field, the file must be
listed in the Valid Files control maintenance record.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 22

File Definition Maintenance for a Branch Specific File

Earlier in this lesson we discussed the fact that some files have “parent” files. The
branch specific files are files that use the parent file model. The parent file is the file
used for the reporting and mass loading of data because the dictionary file is pointing
directly to the parent file. However the actual data is stored in the physical file described
by the file name.

Note in the example below that the Prevent Mass Load is set to a Yes. This does not
limit you from mass updating data to the file, all this means is that the mass load will be
conducted through the parent file of PRODUCT.

A very important element of the branch specific files is the Branch Specific option we see
on this screen. Notice in the above figure it is highlighted. This is an indication to you
that an attribute within the file is storing the branches and territories that contain data.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 23

By accessing this option we see that the branches containing data in this file are stored on
attribute 40. Later when we discuss attributes and dig deeper into the branch specific file
set up this will make more sense. What is important now is that you know you have a
place to go to find where the branch listing is stored within a branch specific file.

This attribute is never changed by the end user (that’s you). Any file that is a branch file
will have the appropriate branch setting assigned here.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 24

Lesson 3
Eclipse File Structure

Objectives
After you complete this lesson, you will be able to:

• Understand Eclipse files, records, and attributes
• Recognize multi-values and sub-values
• Use TCL to view the raw data in a file
• View the dictionary items defined for a file

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 25

Eclipse File Structure

The Eclipse file structure can be compared to a file cabinet.

Eclipse Account – A drawer in the file cabinet.

Files – Folders in the drawer. For example, there can be separate folders for customers,
products, and invoices.

Records – Paper in the folders. For example, a customer folder contains a separate sheet
of paper for each customer. Each record has a unique identifier, referred to as an @ID or
KEY. It can be almost any combination of alphanumeric characters, with no spaces.

Attributes/Data Elements – The lines or fields of information on the paper. For
example, in a customer record, the name, address, phone number and billing terms are
attributes.

The record key is always stored in attribute 0.

Attributes can have multiple values and values can have multiple sub-values.

File Cabinet Database File Structure Eclipse Example

Drawer Account Eclipse software package

Folder File ENTITY

Page of information Record ABC Company’s ID

Lines (fields) of information on
each page

Attributes/Data Elements
Multi-valued
Sub-Valued

Address for ABC Company

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 26

Attributes, Values, and Sub-Values

Eclipse records are variable-length. In the raw data file, markers separate attributes,
values, and sub-values. The following example lists some attributes in a customer record.
In Eclipse, customer records are stored in the “ENTITY” file.

 200 Attribute 0
0001 Goldberg Boyle Brogan & Shusman PC Attribute 1
0002 Cherry Hill Corporate Center 2 535 Route 38, Suite 300 Attribute 2
0003 CHERRY HILL Attribute 3
0004 NJ Attribute 4
0005 08002 Attribute 5

Attribute 0 – The number 200 represents the @ID or key of the record. The record key is
always stored in attribute 0.

Single-Value Attributes – Attribute 1 contains the customer name, which is a single
string of information stored as one value. The information stored in an attribute number is
consistent for every record in a file. In this example, the customer name is stored in
attribute 1 for every customer in the Eclipse database.

Multi-Value Attributes – Attribute 2, the street address, is multi-valued. The 2 between
“Center” and “535” is a value marker that represents the separation between the first and
second value.

Sub-Values – Values can contain sub-values. Sub-value markers (n) separate multiple
sub-values. The following is an example of the credit information for a customer.

This data is stored in attribute/data element 0022 in the ENTITY file. This attribute
shows the credit limit, past due limit, job limit, days past due, deposit on stock items and
non-stock items.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 27

The raw data would display the sub-value markers and value markers as follows.

There are commands we will learn to view the raw data as we see above.

It is possible for the system to have values that are sub-sub-valued (a sub-value of a sub-
value). The system displays this information using the square root symbol.

We will discuss this type of data structure later in this class.

Sub-value Value

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 28

Viewing Raw Data in a File using TCL

Eclipse Terminal Control Language (TCL) commands enable you to view the raw data
stored in files.

Report Writer/Mass Load enables you to take raw data, manipulate it, and display it for
analysis and interpretation. To understand how you can use Report Writer, you must first
understand the TCL commands and be able to view raw data.

Use the following TCL commands to display raw data:

Command Function

LIST.ITEM
Lists all the records in the file showing the attribute numbers and raw
data for the attributes that contain data.

CT
Copies a record to the terminal, showing all of the attributes, even
those containing no data.

DISP
Displays a record, showing the dictionary IDs and raw data for the
attributes that contain data.

SORT.ITEM
Sorts the records by their Key or @ID and then displays a record,
showing the attribute numbers and raw data for the attributes that
contain data.

LIST
By default, displays only the Key or @ID of the records within the
file. You can also use this command to display record data on the
screen or send data to the printer. This function is discussed in Lesson
4.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 29

Rules for using these commands:

• The name of the file to which the record belongs must appear directly after the
command.

• The internal ID of the record must appear after the file name when using the CT

command.

For example, to view the raw data for the customer who has an internal ID or key of 100,
enter the commands as follows:

LIST.ITEM ENTITY 100
or

CT ENTITY 100
or

DISP ENTITY 100

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 30

Exercise 3.1
In Product Maintenance, display a product.

Note the Product ID and record the following information as you see it on the
screen:

• Price Line
• Buy Line
• GL Account / Product Type

Use a TCL command to view the raw data for this product.

Record the information as you see it on the screen and note the corresponding
attribute numbers.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 31

Dictionary Maintenance Summary Screen

The Eclipse dictionary is a tool you can use to identify and access the data stored in the
Eclipse data files. User-defined dictionary items associate names and report formatting
characteristics with each attribute/data element stored in the Eclipse data files. All
dictionary items reside in the EDICT file.

The Report Writer/Mass Load program uses the Eclipse dictionary to display raw data in
a format you can understand.

Use the Dictionary Maintenance Summary screen to display the dictionary items defined
for any validated file in Eclipse.

In the example shown above, there are 396 dictionary items defined for the ENTITY file.
The first 17 are displayed. The Attr column shows the attribute/data element number to
which a dictionary item is assigned.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 32

It is possible to create multiple dictionary items in Eclipse for the same attribute or field
of information. Any dictionary item that is flagged as an Eclipse Dictionary will appear
in view-only format.

To locate a dictionary item:

• You can use the Sortby hot key to sort the list by attribute number or Dict ID, and
then scroll through the list.

• You can also use the Select hot key to filter the list. Enter selection criteria based

on the dictionary ID, description, dictionary type and Archived Dictionaries.

Dictionary ID is used if you know the dictionary you want to select out of the
list. This will clear the entire Dictionary Summary screen with the exception of
the dictionary item you enter on this prompt.

Description Pattern Search is used if you do not know the dictionary id, but you
have an idea of what the description is. This will search on any word within the
description of the dictionary. Remember, the less you key in the more options
you will get. The more you key in the less number of options will appear.

Dictionary type is used to show either D type dictionaries (Data Elements) or I
type dictionaries (I-Descriptors).

Show Archived Dictionaries are only relevant if you were using the Eclipse
software application during release 7. Release 8 and above are using new and
improved data elements for reporting and mass loading. However, Eclipse never
purged out the old dictionaries. Instead we archived them so that users could see
what dictionary items they had created in release 7.

Most dictionaries (not pointing to a branch specific value from release 7) that are
archived are good dictionaries and work fine. They are not however using the
new standards we have in place in release 8.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 33

Field Descriptions

The fields on the Dictionary Maintenance Summary screen provide the following
information:

Field Description
Dict ID Dictionary ID assigned to the attribute. An attribute can have

multiple dictionary IDs.

Description Functional description of the dictionary item.

Prompt The default column heading for the selected data when printed on a
report and the prompt for this information if used in a Report Writer
Select statement with a variable value. This field displays in place
of the Description field when you press the View hot key.

Typ Dictionary item type:
• D (Field Definition) – Information stored within a record, also

known as an attribute or field.
• I (Interpretive Descriptor) – A symbolic field derived from

manipulation of data or a formula.

Attr Numerical position of the attribute (field) within a record.

Val Numerical position of a value within a multi-valued field.

Subv Numerical position of a sub-value within a multi-value.

Just Indication whether the data in this dictionary item should be left
justified or right justified on a display/report column. Typically,
text is left justified and numbers are right justified. Dates should be
right justified. Some numbers such as UPC and Zip codes are left
justified so that a preceding zero does not get removed.

Width Character width of the display/report column for the data.

Conv Pick output conversion code that determines the display/report
format of the data. Conversion codes can be found in this
workbook in a later lesson.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 34

Hot Keys

The hot keys on the Dictionary Maintenance Summary screen provide the following
functionality:

Hot key Lets you…
Edit Dict Edit the dictionary item on the Eclipse Dictionary Maintenance screen.

I-Desc Edit the I-Descriptor formula, if this item is an I-Descriptor.

Expand Desc Displays an expanded view of the description field. The expanded
description contains 3 lines that are 60 characters wide.

Sortby Sorts the displayed dictionary items numerically by attribute number or
alphabetically by Dict ID

Print Listing Sends a copy of the currently displayed dictionary file summary to your
Hold file or default printer.

Select Displays only the dictionary items that match selection criteria based on the
dictionary ID, description, and type.

View Toggles between displaying the Description field or the Prompt field for
each dictionary item.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 35

Example of Multi-Values in Dictionary Maintenance Summary

To recreate the following example, display the Dictionary Maintenance Summary screen
for the ENTITY file. Then use the Select hot key and enter freight as the description
selection criteria.

The numbers displayed in the Val column for attribute 7 indicate the multi-valued
position the data is being stored for the data element represented on the screen. Each
value represents something different for attribute 7.

When viewing a customer or vendor you may have noticed bullet points that appear to
the right of the customer or vendor’s name and address.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 36

The raw data for the entity @ID 11790 appears as follows:

Attribute 7 contains two values separated by a value marker (2). For this dictionary item,
a value of 1 indicates that the field is set to “*.” In this case, both the first and second
values are set to “1.” This corresponds to the “*” settings on the Customer Maintenance
screen.

Note the value marker that
separates the bill-to flag from
the ship-to flag.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 37

Example of Sub-Values in Dictionary Maintenance Summary

The as discussed earlier, credit parameters of a customer are entered using the Credit
option from the customer file maintenance screen. This information is stored not only as
multi-valued, but sub-valued as well. This means that each value can have multiple
values within.

For example the credit parameters for entity @ID 832 looks like the following:

If we open the dictionary maintenance summary screen we can find that the credit limit
we see on the screen is located on attribute number 22 in the first value and in the first
sub value of value 1.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 38

The raw data for entity @ID 832 appears as follows:

The separation of each value is represented by the superscript “2” and the separation of
the values within each value is represented by the superscript letter “n”.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 39

Exercise 3.2
1. From the Files / Eclipse Dictionary… menu, select Dictionary Maintenance

Summary to display the Dictionary Maintenance Summary screen.

2. Display the attributes of the ENTITY file.

3. Find attributes that contain a:

• Single string of data

• Multi-valued string of data

• Multi-valued and sub-valued string of data

4. Using TCL, view an ENTITY record in its raw data format.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 40

Branch Specific Data File Structure

Sometimes you may here the terminology “product master” or “customer master”. The “master”
is used when we are referring to the main parent file. The branch specific file is linked to the
parent or master file for you.

The PRODUCT file (parent/master) has two linked files:

• PROD.BR
• PROD.CALC.BR

The data elements for the branch specific files are actually used FROM the parent file.
Therefore you would never create a report writer or mass load using the PROD.BR or the
PROD.CALC.BR file. Instead you would use the PRODUCT master file.

PROD.BR File

The Dictionary Summary Screen for the PROD.BR file will display the name of the data
elements for the data being stored in this file. This information is mostly static
information, meaning that it is not calculated by the system.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 41

As you can see, data such as the product’s Lost Sales Percentage, Exception Sales
Percentage and EOQ information are some examples of the type of data stored in this file.
These dictionary items are found in the PRODUCT file for use in Report Writer and
Mass Load.

The system will have a main record for an item as well as branch specific records (if
cached). Below is the main record for @ID 9111 in the PROD.BR file. In lesson 2 we
looked at the file definition maintenance screen for the PROD.BR file and we found that
the branches attribute is listed as attribute 40.

This information only appears on the main record within the file. However by looking at
the main record one can surmise that there will be 1 other record in this file for this item
that contains the branch specific data if the records have been cached. This record will
have an internal id or @ID of 9111*1.

What is a cached record?
In the branch specific files, the system will create a new record for branch specific data.
This creation occurs when any branch data for the record is viewed. This can include
looking up the inventory inquiry screen that will display branch specific data or it can
include looking at branch specific data for an item in product file maintenance.

This happens automatically by the system and is done to increase system performance
when viewing the branch data for items.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 42

Below is the branch specific data for the record described and shown above. One thing to
note is that the attribute 40 on the branch specific record is nonexistent. This record is a
cached record and is created when a user views branch specific data for a product. This
includes the inventory inquiry screen.

This is the Branch 1 record for @ID 9111. Notice in the @ID there is an asterisk
separating the product @ID from the Branch number.

Exercise 3.3
1. Find a product in Product File Maintenance.
2. Set the Lost Sales Percentage and Exceptional Sales Percentage for

Branch 1.
3. Display the item on your screen in TCL using one of the commands you

have learned.
4. Find the attribute/data elements your data is stored in.
5. Verify your findings in the Dictionary Summary Screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 43

PROD.CALC.BR File

The system calculated data such as hits, demand etc for an item are stored in the
PROD.CALC.BR file. Just as we saw in the PROD.BR file, this file will have a main
record which shows all of the branches the calculated data has been updated to. Each
branch will then have its own record if it is cached. The @ID will display with the
product’s @ID”*” BRANCH.

The dictionary summary screen for this file shows:

Note: under no circumstances will a mass load occur against this file directly.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 44

Below is an example of the calculated data in Branch 1 for an item. This record is a
cached which is why the *1 appears as a suffix to the internal id of the product. If the
branch cache records were to be deleted, this record would be removed from the system.
When branch specific data is viewed for the item, the system will automatically rebuild
the cache record.

Exercise 3.4

6. Find a product in Product File Maintenance.
7. View the ranks and the Demand Audit screen for Branch 1.

 Ranks are found off of the pricing hotkey.
 Demand Audits are found off of the Inventory hotkey.

8. Display the item on your screen in TCL using one of the commands you
learned.

9. Find the attribute/data elements your data is stored in.
10. Verify your findings in the Dictionary Summary Screen.

Any file that is designated as a Branch Specific will have a branch attribute. As we
discussed in Lesson 2 this attribute number can be located using the File Definition
Maintenance screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 45

Lesson 4
Selecting and Listing Data in TCL

Objectives
After you complete this lesson, you will be able to:

• Understand TCL retrieve verbs
• Create a saved list in TCL
• Create a basic report using a saved-list

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 46

Using the Select Retrieve Verbs

In the previous lesson you learned how to use the CT, LIST, LIST.ITEM, and DISP
retrieve verbs to list the contents of a single or multiple records.

The following TCL verbs enable you to select groups of records within a file:

• SELECT – selected records are listed in random order.

• SSELECT – selected records are sorted by the @ID or key.

The same technique we learn here is also applied in Report Writer and Mass load.

Retrieve Sentence Structure

The following rules apply when using the SELECT and SSELECT retrieve verbs:

• The retrieve verb must be the first word, indicating the action you want to take.

• The file name must follow the retrieve verb, indicating the file you want to select.

• The selection criteria must follow the file name and use the following syntax:

WITH Attribute name Operator Reference

Reference can be another attribute name or a literal value within quotes.

The following table lists the available operators.

Note: If you don’t put the AND/OR in between dictionaries, then you have an implied OR
in the dictionary before the values.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 47

Retrieve Sentence Operators

Operators are in important when narrowing the number of records to the select list you want to
obtain.

Use this
Operator…

To select a record if the attribute value…

=
EQ
EQUAL

is equal to the reference value.

NE
NOT
NO
<>
><

is not equal to the reference value.

>
GT
AFTER
GREATER

is greater than the reference value.

<
LT
BEFORE
LESS

is less than the reference value.

>=
GE

is greater than or equal to the reference value.

<=
LE

is less than or equal to the reference value.

Examples

To list all the customers and vendors in the state of NJ:

;SELECT ENTITY WITH STATE = “NJ”

;SSELECT ENTITY WITH STATE = “NJ”

To list customers and vendors who do not exist in the state of NJ:

;SELECT ENTITY WITH STATE # “NJ”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 48

Exercise 4.1
1. Using TCL, write a command to select a list of customers and vendors that have a

ship via of OT OUR TRUCK.

Hint: Display the ENTITY file in the Dictionary Summary Maintenance screen and
then use the Select hot key to find the ship via attribute.

Multiple Selects

There are two ways to select records that meet multiple conditions. For example, list all the
customers and vendors in the state of NJ whose address is within a range of zip codes. You can
write:

• One select statement that uses multiple selection criteria, as shown in the following
example.

• Successive select statements in which each uses one selection criteria. Each successive
select statement only applies to the records selected by the previous statement.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 49

Exercise 4.2
1. Using TCL, select products that are stock items and belong to buy line COPFIT.

Wild Cards

Use wild cards to select information that begins with a value, ends with a value, or
contains a value. Following are examples using different wild card formats. If you do a
select on a file that contains “Bob,” “Rob,” “Ben”, and “Abe,” the results you get will
differ according to the wild card format you use.

Beginning with a value.

“B]” This option selects “Bob.”

Ending with a value.

“[B” This option selects “Rob” and “Bob.”

Containing a value.

“[B]” This option selects “Bob,” “Ben,” “Rob” and “Abe.”

Place-holding for the value. Use place-holding to determine where the value is stored in
the string. Use the following wild card to find every value that contains an E as the
second letter.

“^E]” This option selects “Ben.”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 50

Exercise 4.3

1. Using TCL, select all entities that reside in the state of NJ and have a ship via

containing the word “TRUCK.”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 51

Saved Lists

Once you have selected records, you can save the list. You can utilize a saved list in the
Report Writer / Mass Load Program, Print Price Sheet Program, or TCL program, or
simply list the data directly to the TCL screen.

To save a selected list, use the SAVE-LIST command. For Example:

SAVE-LIST SHIPVIA

There are two rules that apply to this command.

 The list must be assigned a name for retrieval purposes and
 The name cannot contain spaces.

To retrieve a saved list, use the GET-LIST command. For Example:

GET-LIST SHIPVIA

Exercise 4.4
1. Save the list that you created. Use your initials as a prefix and SHIPVIA for the name.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 52

Listing Saved Data

Listing data in TCL is limited, because you see the data in its raw form. Listing data
using the Report Writer/Mass Load program is much better, because the raw data is
converted to an understandable format. If you understand the file structure and TCL
commands, then you will have a better understanding of what the Report Writer/Mass
Load program can do for you.

To list data in TCL the command structure is as follows:

LIST filename attribute-name attribute-name attribute-name

The LIST command displays the record key and the raw data in each designated
attribute.

For example, the following command lists the record key and the raw data stored in the
attribute called STATUS for every record in the PRODUCT file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 53

The product status in the raw form is different from what is displayed on the Product
Maintenance screen. In the raw form it is a numeric value. On the Product Maintenance
screen it is a word that describes the status. The following list shows the word that
corresponds to each numeric value.

1 = Stock 4 = Delete 7 = Purge
2 = Non-Stock 5 = Review 8 = Temp
3 = MiscChrg 6 = Comment 9 = LotItem

This concept is as important for Mass Load as it is for Report Writer. Mass loading the
word “Stock” as a product status will cause program errors. Data must be stored in its
raw format. In this example, use the number 1, which represents “Stock” as the input
value when mass loading.

The most common question asked is how do you know the definition of the raw data?
Unless you know it, the only way to learn it is to test it. For example, change the status of
a product, then view it in the raw form in TCL or test the dictionary item. We will discuss
testing dictionary items in future lessons.

In the following example, a dictionary item has been created in the product file that is an
I-Descriptor called STAT.DESC. This dictionary item displays the alpha description for
the status.

The following command lists records in the PRODUCT file. For each record it shows the
record key, the raw data stored in the attribute called STATUS, and the alpha
representation of that status.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 54

There is no limit to how many dictionary items you can list using the LIST command.
When the information won’t fit horizontally across the screen, it displays vertically.

The following example shows a vertical listing of the customer’s name, first contact, first
contact’s phone number, and customer type from the ENTITY file:

Exercise 4.5
1. Using TCL, retrieve your saved list.

2. List the following information:

• Name
• State
• Ship Via

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 55

Sorting

There are two verbs used to sort a list of records:

• BY – sorts records in ascending order

• BY-DSND – sorts records in descending order

The dictionary item on which you want to base the sort must follow the sort verb.

Example 1

List the records in the PRODUCT file. Display the product description and price line.
Sort the products by price line and then sort the products within each price line by their
description.

;LIST PRODUCT DESC LINE BY LINE BY DESC

Example 2

List the records in the PRODUCT file. Display the product description, price line, and list
price. Sort the list by price, with the most expensive items at the top and least expensive
items at the bottom.

;LIST PRODUCT DESC LINE LIST BY-DSND LIST

Exercise 4.6
1. Using TCL, retrieve your saved list.

2. List your saved list, sorted in ascending order.

3. List your saved list, sorted in descending order.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 56

Setting Common Data

Some dictionary items prompt you to enter data, such as a branch number or date, for the
item to evaluate properly. In TCL, use the SET.COMMON command to enter data
required by dictionary items that have a prompt.

For example, in a multi-branch environment a product can have different on-hand
quantities in each branch. Each branch can also store its on-hand quantities in multiple
bin locations. Before you write a TCL command using the ON.HAND dictionary item,
you need to specify which branch and bin location the command applies to.

SET.COMMON

Enter the SET.COMMON command at the TCL prompt to display the following screen:

Enter data for the fields related to the dictionary items you plan to use in following TCL
commands and press Esc. Any information you enter on this screen is utilized by future
TCL commands, until you exit from the TCL program or change the settings.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 57

Exercise 4.7
1. Using TCL, list products and display their on-hands without setting any common

data.

2. Using TCL, set common data by entering a branch and as-of-date.

3. List the products and their on-hands again.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 58

Activating Upper/Lower Case Sensitivity

Eclipse TCL is case-sensitive. The system is set up to convert the TCL statements you
enter to upper case, because TCL commands must be upper case and Eclipse file names
and dictionary items are stored in upper case.

When selecting records based on attribute data, however, you may want your TCL
statement to be case-sensitive. For example, a select statement that gathers all entities
with a name beginning with “Joe]” produces different results, depending on whether
Upper/Lower Case sensitivity is active.

UL Command

Use the UL command to activate Upper/Lower Case sensitivity. This remains active until
you exit the TCL screen.

Following are two examples. The first selection was performed without activating
Upper/Lower Case sensitivity. The command selected 14 records. The second selection
was executed after activating Upper/Lower Case sensitivity. This time the command
selected just 2 records.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 59

In the first example, only those entities whose name began with an upper case “JOE”
were selected.

In the second example, only those entities whose name began with an upper case “J” and
lower case ‘oe’ were selected.

Note: The select function in Report Writer / Mass Load respects Upper/Lower Case
sensitivity. This function will be discussed further in Lesson 6.

Exercise 4.8
1. Using TCL without Upper/Lower Case sensitivity activated, select products with the

word “White” in the description.

2. Using TCL with Upper/Lower Case sensitivity activated, select products with the

word “White” in the description.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 60

Lesson 5
Creating a Basic Report in Report Writer

Objectives
After you complete this lesson, you will be able to:

• Use the basic Report Writer/Mass Load screens
• Create a basic report using existing I-Descriptors and attributes

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 61

Report Writer

Report Writer enables you to extract information from the Eclipse database and create
customized reports. A report can be printed directly from Eclipse or downloaded to your
PC, where another application can access and use the data. The Report Writer program
can calculate subtotals and or perform other mathematical calculations on numeric data.
You can also use Report Writer to print mailing or bin labels.

There are three major steps in creating a report:

• Designing the Report Layout – First you design the report layout, including the
title, columns, headings and totals.

• Selecting the Report Data – After you have designed the report layout, you need

to specify the criteria to be used for selecting data for the report.

• Running the Report – After you have designed the report layout and selected the
data for the report, you need to process the data and create the report.

Designing Your Report

What do you want to use this report for? Use the answer to this question to determine the
information to include in the report and how to display it.

Then you need to determine which file the information will come from. For example, if
the report is a sales report, but you only want monthly and yearly sales, this information
can be obtained from the ENTITY file. If you need product information pertaining to the
sales, then the PSUB file is more appropriate.

Use the report writer view of the Report Writer/Mass Load Design screen to design a
report layout. From the Reports menu, select Report Writer to display this view.

In the header portion of the screen you assign an ID to the design, designate the file from
which the data for the report will be obtained, and enter the title to be printed at the top of
each report page.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 62

The Design ID is something that will be repurposed. This means that you can re-run the
report again and again. The ID should be something that references what the report is
about and should have a prefix of your initials so that you can always find the reports you
created quickly and easily.

File Name: The hardest part of creating a report writer report is making sure that you are
starting in the correct file. Use the spreadsheet provided to you in Lesson 2 to help you
pick the right file.

The Title can be more detailed description. Remember that this will appear on the report
itself when it is complete. Make the title user friendly so that when the end user looks at
their report, they understand what the report is all about.

Helpful Hint: It is best to clearly write down or obtain a specification sheet from the
requester of what they want to see on the report. Important questions to have answered
are how to select, sort and subtotal the report and of course, what do they need to see.
This will help you to determine what file you need to turn to and whether all of the
information is available from that file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 63

Painting Your Columns

Once you have determined the file and the fields of information you want to display on
your report, you need to paint your columns. The Report Writer/Mass Load program
enables you to paint your columns with more flexibility than TCL’s LIST command.
You have the option of changing your column headings as well as your width and output.

Col:

The Col number represents each column on the report. In some case scenarios this
column will show an asterisk next to a number. This is a clear indication to you that the
data element chosen requires more information to be entered using the

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 64

Dict Item/Formula:

In the Dict Item/Formula field, enter the dictionary item for the field you want to
display.

Use the F10 function here to view a list of the valid dictionary items available within the
file. You can also use the Dict Sum hot key to display the Dictionary Summary
Maintenance screen for the file.

It is possible to create a formula from the results of two columns on the report. Let’s say
you had a report on the product file that displayed the item’s on-hand quantity in column
3 and the item’s replacement cost in column 4. You can have column 5 be a calculation
of 3*4. This means multiply the results in column 3 by the results in column 4 and
display it in column 5.

Formulas can also be a bit more complicated than the simple math we did in the above
example. You can divide (/), add (+), subtract (-) and multiply (*) as well as a
combination.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 65

In both previous examples, notice that the first column’s dictionary item is called
VIEWER_ID. Utilize the VIEWER_ID in such files as ENTITY and PRODUCT. This
dictionary item converts the internal ID or “key” of the record, so that you can drill down
into the record from your Hold File or Spooler.

When you enter a dictionary ID, the system populates the remaining columns with
information such as width, column heading, and format from Dictionary Maintenance,
and standard defaults. You can change this information to reflect your desired output, as
discussed below.

Width

The Width is filled with the default defined for the dictionary item. You can change the
width larger or smaller. However you want the column to be wide enough to view all of
the information in the field.

Column Heading

The Column Heading comes from the Prompt defined for the dictionary item in
Dictionary Maintenance. This will appear as the column heading at the top of the report.
If necessary, change the heading to mixed case, so it has a better look and feel.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 66

Using the Files Option on Report Writer

The files option will provide you a list of other files you can link to from the file your
report writer began with.

An important rule to this hotkey is that you need to know the data that you want to pull
back and the “key” that is going to grant you this access for the data you are looking to
obtain.

The same rules that apply when creating an I-descriptor using the TRANS command
exists here. (We will be discussing the creation of TRANS command dictionaries in a
later lesson.)

If I want to pull back the Outside Salespersons full name from the INTITALS file when
running a report from the ENTITY file, it would be silly for me to use the Inside
Salesperson as the “key” to the INTITIALS file. I would want to use the Outside sales
person.

In the following example we have a report writer report that is being written off of the
PRODUCT file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 67

The Files option when accessed provides a list of files we can obtain information from.

Once a file is selected the system will display the different dictionaries that will link you
to the file you chose. This is the crucial part of the entire process.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 68

In the figure below we can see that both BUY_LINE and SECONDARY_BLINE are
options to choose from. If we are interested in seeing information pertaining to the buy
line attached to the product we would choose buy-line. If however, we need to obtain
information relative to a secondary buy line that may or may not be attached to the
product, we would pick secondary buy line.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 69

Once the link has been selected we can search for dictionary items from the file we just
linked to.

Any data element that exists in the file will become options. In this example here we will
select the procurement group that is assigned to buy line for the items appearing on the
report.

After the dictionary is selected the system will display the dictionary differently from
others being used on the report. The system will insert an exclamation point (!) as a
prefix with the file name attached to it.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 70

A tilde (~) will appear after the file name which separates the file you linked to, to the
dictionary you are displaying on the report.

Advanced Search for Dictionaries in Other Files

The files option above is great if you know the file that you want to go to but you are
unclear as to the data elements from the file you want to display on your report. What if
you knew the dictionary item from another file? Is there a short cut to get to the
dictionary without using the Files option?

Using the forward slash (/) as a prefix to a dictionary item search, the system will be
smart enough to display all of the dictionary items you can utilize from the file you are
creating your report from.

In the following figure a report is created from the product file. Using the forward slash
we will search for all data elements that can be used in the product file regardless of the
file the dictionary item actually belongs. After we key in our search criteria we use the
<enter> key to begin the process.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 71

There are pages of options to choose from. The system will display the name of the
dictionary item it encountered as well as the file for which it belongs.

Find the element you want to use and select it by positioning your cursor on the option
and hit your <enter> key.

Next the system will ask you for the appropriate path you want to use to get to the
dictionary item.

As stipulated earlier, picking the path is the most important part of this process. Pay
careful attention to how you want to get to the file and what will be returned in the
column with the path you chose.

Lastly you will be prompted to choose the key that will give you access to the file. This
process is the same as using the files option from the report writer/mass load screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 72

How does the System Know what Files you have Access to?

In the dictionary maintenance screen there is a hotkey called “Key”. This will provide
you the name of the file(s) the dictionary item will give you access to.

As we can see in the above figure the data element in the product file called price line is
the Key that will give you access to the Price Line file itself. It is possible that a single
data element can be the “key” to multiple files.

This one field in the dictionary maintenance screen is what drives the ability to use the
files option or the forward slash option in the report writer module.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 73

Path Option on Report Writer

The path option is available only if your cursor is positioned on a column that will be
using the linked files method. This hotkey displays the path that you took to extract
information from another file onto your report.

A new screen will appear on top of your report writer design displaying the end file and
end dictionary item you retrieved and below the file you started in and how you linked
into the ‘end file’.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 74

Just because a file is listed it doesn’t mean that the desired data from the file is achieved.
Be careful by clearly outlining what it is you need to extract from another file.

To be clear lets take a look at an example of a report writer report from the Buy Line file.

In column 4 of the above figure, we are linking out to the product file to extract the
GL_PRODUCT_TYP. The question that we need to ask ourselves is what are we using
to get to the Product file from buy line file? The buy line is easy to get to from the
product file because every product must have a buy line assigned to it. So, how are we
going in the reverse direction?

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 75

Buy lines can have a Non-stock Default Template product assigned. It is not a
requirement that a buy line has this, therefore some buy lines may have one and others
may not.

When the path option is shown for column 4, we can see that the system is using the @ID
of the non-stock template as our key into the product file.

Does one single product provide you the data that you are looking for and keep in mind
that it is a non-stock? If you were looking to display information for the item attached to
the buy line that is a different story.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 76

Exercise 5.1
1. From the Reports menu, select Report Writer.

2. Design a basic report using the Entity file. Set up your columns and your column

headings to display:

• Customer’s Name
• Customer’s Contact
• Contact’s Phone number
• Price Class the Customer belongs to
• Customer’s Credit Limit
• Customer’s Inside Salesman’s Full Name

i. Hint: use the files option to retrieve this data for your report.
• Customer’s Start Date (Created Date)

Make sure your columns are wide enough to view all of the information in the fields.

3. Once you’ve painted your columns, stop.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 77

Column Data

When your cursor is positioned on a dictionary item chosen for your report, the Column
Data hot key may be highlighted. This indicates that more specific input is required in
order for that dictionary item to produce accurate information on the report.

For example, the PHONES dictionary item forces the Column Data hot key to highlight.
Because this dictionary item is multi-valued, you are prompted to designate which value
to select for the report. From the Report Writer/Mass Load Design screen, you can use
the Eclipse Dict hot key to display the Eclipse Dictionary Maintenance screen and
confirm that the Multi-Valued field for this dictionary item is set to Y.

Use the Multi-Valued (Y/N/B) field to specify whether the information stored in this
attribute has multiple values or is it branch-specific.

• Y – Column data will prompt for a multi-valued position.
• N – Column data will not prompt for anything.
• B – Column data will prompt for a branch.

For example, a vendor or customer’s list of contacts and phones is multi-valued. When
you use the PHONES dictionary item in Report Writer/Mass Load, the column data
prompt will appear as “Multi Valued Pos.”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 78

In Lesson 3, you learned that information could be stored as a sub-value of a multi-value.
The customer’s credit parameter is a perfect example as we discussed earlier.

In other cases you may be prompted to enter a branch, territory or ALL as well as Ignore
Branch Hierarchy shown below:

Ignore Branch Hierarchy

This setting is a yes or no prompt. In Eclipse you can prioritize your territories so that
one territory value will override another territory value.

A territory is a group of branches used for authorization, vendor, product and customer
settings as well as reporting purposes. For example, a nationwide company can designate
geographical territories, such as east, mid-west, and west. A branch can belong to more
than one territory.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 79

The territory maintenance screen is located on the Files menu under the Branches option.

The Entity and Product priority levels are used to determine which territory will take
precedence over another territory.

So the question becomes, when running a report do you want to see the value that is
posted on the product or entity for the branch or do you want to see the value that is being
USED for the branch?

The hierarchy for priority is:
• Branch specific setting will override a territory setting.
• Territories look to the priority level defined here for hierarchy.
• The territory of “All” which is predefined in the system is used

when a territory or branch setting is not found.
• Lastly, the system will use any default control parameter setting.

Responding to the common data prompts serves the same function as using the
SET.COMMON command in TCL.

Exercise 5.2
1. Using the report you designed in Exercise 5.1, set the Column Data for the dictionary

items that require more specific information.

2. Stop.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 80

Break and Total

How you break and total the report should line up with the way that you plan on sorting
the report.

When you flag a column to break, the system will provide to you a warning if the column
is not already defined in your sorting criteria.

In the above example we are sorting by Zip Code. However the zip code is not in our
sort criteria yet as we have not begun the process of selecting out our records. You can
still enter a Y in this column and continue. Simply remember that your first sort should
be using the dictionary item you are breaking your report on.

What would happen if the break was designated for column 2 (Name), but the
report was sorting on Zip Code?

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 81

Total Column

If this report had a dictionary item that was returning a dollar value or some sort of
numeric data, we could use the total column to total up the values and provide a total at
each break on the report.

Earlier in this lesson we saw an example of a report that was written from the product
file. In the report we discussed the ability to do math between to columns on the report.

Note the total column is displaying a “Y” for the on-hand column, the replacement cost
column as well as the column that will multiply the results of both.

If your goal was to obtain a calculated value such as a gross profit percentage or margin,
the total column would use a “C” to calculate as opposed to the “Y” for totaling.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 82

Formatting Data

Use the Format column on the Report Writer/Mass Load Design screen to change the
output format of some dictionary items. You can format the following types of data:

• Date
• Time
• Case characters
• Numeric values

The following tables list the format conversion codes used by Report Writer/Mass Load.

Date Output

Code Data Output
D 10851 15 SEP 1997

D2- 10851 09-15-97

D4- 10851 09-15-1997

D2/ 10851 09/15/97

D4/ 10851 09/15/1997

DM 10851 9

DMA 10851 SEPTEMBER

DW 10851 1

DWA 10851 MONDAY

DY 10851 1997

DI 09/15/97 10851

Time Output

Code Data Output
MT 32400 9:00

MT 54000 15:00

MTH 3600 01:00AM

MTH 46800 01:00PM

MTS 54000 15:00:00

MTHS 54000 3:00:00PM

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 83

Character Output
Code Data Output
MCA #123ABC* ABC

MC/A #123ABC* #123*

MCN #123ABC* 123

MCT JOHN DOE John Doe

MCU John Doe JOHN DOE

MCL John Doe john doe

Numeric Output
Code Data Output
MR0 123456 123456

MR2 123456 1234.56

MR3 123456 123.456

MR23 123456 123.46

MR2, 123456 1,234.56

MR2,$ 123456 $1,234.56

MR2,$*12 123456 $***1,234.56

MR2E -123456 <1234.56>

MR2D 123456 1234.56DB

MR2C -123456 1234.56CR

MR2N -123456 1234.56

MR2M -123456 1234.56-

MR29 1234560000 1.23

MR29 1237891234 1.24

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 84

Exercise 5.3
1. On the report you are building, fill in the format columns as follows:

• Force the customer’s name to appear in all Caps.

• Force the credit limit for the customer to appear with a dollar sign and comma
if above 1000.00.

• Force a format of your choice for the date when the customer was created.

2. Stop.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 85

Lesson 6
Selecting and Sorting Your Report

Objectives
After you complete this lesson, you will be able to:

• Select records to be included in your report
• Use the standard selection screen in Report Writer
• Use the advanced selection screen in Report Writer
• Sort your report data

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 86

Report Writer/Mass Load Selection Screen

The Report Writer/Mass Load Selection screen serves the same function as the SELECT
command in TCL. Use this screen to specify the criteria for selecting the records to be
included in the report. The structure of this screen removes most of the guesswork from
understanding and applying the rules.

To display this screen, use the Select Build hot key on the Report Writer/Mass Load
Design screen.

To specify selection criteria, you need to build a conditional statement. The format of this
statement is similar to the format of the SELECT command in TCL. The conditional
statement uses a combination of verbs, modifiers, conjunctions, dictionary item names,
and operators to select a subset of records from the file being used to generate the report.

Each condition is entered on a separate line. Each line is connected to the next with the
AND or OR conjunction.

• AND – The condition on the previous line and the condition on the given line
must both be true for a record to be selected.

• OR – Either the condition on the previous line or the condition on the given line

must be true for the record to be selected.

Eclipse populates the conjunction column for the first condition with three asterisks. This
corresponds to “WITH” in TCL.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 87

Each condition is expressed using one of the following operators. Press F10 in the Op
column to display the options:

The TCL command that corresponds to the selection shown on the previous page is as
follows:

SELECT ENTITY WITH V/C = “C” AND WITH STATE = “NJ” AND WITH
SHIP_VIA = “[TRUCK]”

This command selects customers that have a ship via containing the word “truck” and
reside in the state of “N.J.” Both criteria need to be met for a customer to appear on the
report.

Exercise 6.1
1. For the report you are creating, select those customers who belong to Price Class “3.”

2. Stop.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 88

Compare To Column on the Select Screen

The Compare To column is used in conjunction with the dictionary item and operator to
narrow the number of records to appear on the report.

The information entered in the Compare To column can be:

• A dictionary item from the file used to create the report writer.

• A text string enclosed in quotation marks.

• A null (or blank) value.

• A user-defined prompt.

Comparing to a Dictionary Item

Use dictionary items to compare the data in one dictionary item to another. The
dictionary item represents field/attribute data or an I-Descriptor that provides data.

For example, to generate a list of customers whose Inside Salesperson and Outside
Salesperson are the same, enter the following information:

To produce a list of customers whose Inside Salesperson and Outside Salesperson are not
the same, use the # operator.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 89

Comparing to a Text String

A text string is specific information designated by you to compare to the dictionary name.
You can also use wild cards, as discussed earlier, in this format.

For example, to select customers assigned to a designated Inside Salesperson, enter the
following information:

This conditional statement selects records whose INSIDE_SALES attribute contains
“BERGERD.”

To list those customers whose Inside Salesperson is not “BERGERD,” use the # operator.

Comparing to a Null Value

Use the null value in the Compare To column to select records based on whether the
designated dictionary item contains data or does not contain data. A null value is
represented by two quotation marks.

For example, to select customers who have not been assigned an Inside Salesperson,
enter the following information:

This statement selects records whose INSIDE_SALES attribute is empty.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 90

On the other hand, to select customers who have been assigned an Inside Salesperson, use
the # operator.

Comparing to a User-Defined Prompt

A user-defined prompt in the Compare To column enables the system to prompt you to
enter a Compare To value each time you run the report.

Set up a user-defined prompt by entering a text string between dollar signs, such as
$DATE$, in the Compare To field. Each time you run the report, the system prompts
you to enter the requested data. Your selection criteria are dynamic; because the
information passed to the report can be different each time the report is generated.

In the following example, each time you run the report the system will prompt you for a
state.

A conditional statement can contain multiple prompts. The only rule is that the text string
for each prompt must be different.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 91

For example, to select all customer records that were created within a range of dates,
enter the following information:

$SDATE$ and $EDATE$ are the user-defined fields that will contain the values entered
at the prompt. If you used $DATE$ for both prompts, the system would only prompt for
one date instead of a date range. When requiring different information for the same
dictionary item, it is important that the prompt be unique for each one.

Use the Selection Data hot key on the Report Writer/Mass Load Selection screen to enter
the data requested by the prompts.

The text displayed in the Prompt column is comprised of the Prompt associated with the
dictionary item you are prompting for and the operator from the conditional statement.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 92

To change these default prompts, use the Edit Prompts hot key on the Report
Writer/Mass Load Selection screen. When first displayed, the screen shows the default
prompts. You can replace the defaults with your own text.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 93

Exercise 6.2
1. For the report you are creating, select those customers that have a ship via assigned

and an outside salesperson assigned.

2. Narrow your select further by selecting only those customers who have a credit limit

greater than one hundred dollars.

3. Stop.

Note: The ENTITY file contains both vendor and customer records. Use the V/C
dictionary ID to select records that are customers or vendors.

• V/C = “C” for customer records.
• V/C = “V” for vendor records.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 94

Sorting the Report

After records have been selected, you may want to sort them before running the report.
You should sort your records to work in conjunction with the break points and totals
defined on the Report Writer/Mass Load Design screen.

Use the Sort hot key on the Report Writer/Mass Load Selection screen to designate the
sorting sequence.

In the following example the selected customer records will sort first by the outside
salesperson in ascending (alphabetical) order. Then the records in each salesperson’s
group will sort by the customer name in ascending (alphabetical) order.

Enter the dictionary items to be used as sort criteria and designate the sort Order for each
as ascending or descending. The A represents the TCL “BY” option discussed earlier.
The D represents the TCL “BY-DSND” option discussed earlier.

Use the Path option to use dictionaries from other files while sorting.

Exercise 6.3
1. For the report you are creating, sort the selected records by Zip code and then

alphabetize the customer names within each Zip code.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 95

Report Writer Advanced Selection Screen

The Report Writer Selection screen, displayed using the Adv Selection hot key, serves
the same function as the SSELECT command in TCL. You can use this screen, just as
you used the Report Writer/Mass Load Selection screen, to specify the criteria for
selecting and sorting the records to be included in the report.

Note: This screen is less structured than the Report Writer/Mass Load Selection screen.
You should have a good understanding of the TCL commands before using this screen.

Exercise 6.4
1. Create your report again, this time instead of using the Select screen to select the

report, use the Advance Select Screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 96

Report Driver: Running the Report

The Run option from the report writer/mass load screen will run send the report to either your
hold file or the printer depending on what you choose.

The options that appear on this screen will be determined by the select criteria/column data from
the report writer itself.

If a dictionary item on the column of your report requires additional information such as the
Branch/Territory or All and the information is NOT entered on the column data option from the
report writer screen itself, the system will prompt you to enter the information here.

If more than one dictionary prompts for the same information, the system will only prompt you
on this screen ONCE. This is important to understand if you want columns on the report to have
different information. The detail for each column should be entered under the column data on
the report writer.

If you forget, this screen comes with the column data option. This will bring you into the
column data screen displaying the columns that are requiring more information.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 97

The most important aspect to recognize is that the prompts on the Report Driver are not limited
to the column data prompts from the report writer itself. Any dictionary from your select screen
will also be included on the report driver.

The same rules will apply meaning that if more than one dictionary item requires the same
information, you will only be prompted once… An exception to this would be data ranges for
which you are prompting for a beginning and ending date. Please refer back to your selecting
data section of this workbook if you need more information.

Other options from the Report Driver screen such as the Sample prompt may be useful.

You can access this prompt simply by using your arrow key to move up. Here you can enter a
numeric value of the number of records you want to sample. This allows you to determine if the
report is what you want it to be before running it for all of the records.

Another key component of this screen is the Selection Data which provides the ability to enter
multiple listings for a prompt from the select screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 98

For example: The above report driver has a prompt for a Price Line. This prompt was added to
the report selection screen. Using the Selection Data option the system will open a new screen
shown below where multiple price lines can be added using the “Multi” option.

The notes option is used to provide notes for the end user that may help them to better
understand the report or the use for the report. These notes are entered by the writer of the
report. Instructions on how to run the report are also useful notes.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 99

Lesson 7
Report Writer Options

Objectives
After you complete this lesson, you will understand:

• Understanding other options available from Report Writer
• Creating Mailing Labels using Report Writer

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 100

Report Writer Options Screen

The report writer options screen provides the ability to show the number of records that
appear on the report, create a column delimited file format, double space your report and
print the prompts entered on the Report Writer/Mass Load Selection screen that were
used to select the data for the report.

For those of us that wear glasses and at times feel that they cannot see the world, reading
a report can become tedious. For that reason the options screen allows you to provide
spaces between lines on your report. When the report runs to your hold file the rows
will appear double spaced if you enter a 1.

The print prompts option is a Yes or No response with the default set to a Yes. Any
data specified on the select criteria screen using the Selection option will appear in the
header of the report. This will help to see how the report was selecting at the time it ran.

The print line numbers prompt looks like it could be a yes or no question. However,
this is really asking for a numeric value. The number you enter at this prompt will dictate
how wide the column will be. Each record that appears on the report will be counted
sequentially to the end of the report. The column will automatically become the very first
column on your report.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 101

If you are planning to download the report so that you can open it up in Excel or some
other third party software you can specify what the delimiters will be and whether you
wish to trim out any blank (null) spaces that appear at the end of each string on the report.

Trimming the spaces makes the size of the report smaller and therefore quicker to
download to your pc. The columns can then be extracted in Excel by using the text to
columns option.

The column delimiter can be what ever character you specify. The pipe sign (|) works
well here because typically one would not see a pipe sign in the data.

An example of a report using the trim and delimiter function is shown below:

Exercise 7.1

1. Pull up the report you created and access the options screen.
2. Make your report double spaced and show the number of lines on the report.
3. Re-run your report and verify the results in your hold file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 102

Exercise 7.2

2. Create a simple report from the product file that will select out only stock keeping

items for the price line assigned to you by your instructor.
3. Use the options to trim the blanks with a column delimiter.
4. Run the report to your hold file and verify the results.

Creating Mailing Labels

Mailing labels are accomplished in Eclipse by using a special dictionary item and the
Label option on your report writer.

The dictionary item is simply NA which stands for Name and Address. This dictionary
item will position the name and the address in such a way you would see on a mailing
label or envelope.

We will discuss this dictionary in more detail later in this workbook.

The report writer report should be set up similar to the following:

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 103

Depending on the type of labels used and how many lines will be available for the label
will determine the number of added line spaces you will add.

The above example is assuming a label that will hold 6 lines of information. Because the
addresses in our training data will only be a maximum of 4 lines, we are padding the label
with two extra lines using the SPACE dictionary.

Once we have our columns painted, now we need to define the label layout.

Use the label option on the report writer screen to access.

Once activated the Report Writer Label Specifications screen will open.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 104

There is no rhyme or reason for the default information you see on this screen other than
the Print Labels yes or no. Eclipse assumes that when you are creating a report you are
creating it as a normal report and not labels, therefore the default is a No.

Take a look at the labels that you plan on printing the customer addresses on. It is
important to know the design of the label when filling in the specifications here.

Most often customer mailing labels are the avery labels that are 3 labels across the page
and 10 labels down the page.

Of Labels Across the Page - The number of labels that can be printed across the page.

Of Lines per Label (Height) - The maximum number of lines that can be used for
printing on a label.

Of Lines to Skip between Labels - The number of lines to skip between rows of
labels.

Of Spaces to Indent (Left Margin) - The number of character spaces to indent from
the left edge of the label before printing the text on the label.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 105

Of Spaces per Label (Width) - The maximum number of character spaces that can be
used for printing a line of text on a label.

Of Spaces to Skip between Labels - The number of character spaces to skip between
labels across the page.

If you need to test a sample of records you can either use the sample option when running
the report or you can indicate the number of labels to print in your testing. You are
looking to make sure that the labels will not creep up when the second and third page of
labels are printed out.

If you need more than one copy of your labels to print, you can change the # of copies
option from a 1 to the desired number.

The very last option of printing the label headings is not currently doing anything.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 106

Once you have the Label Specifications filled in and have tested them you may want to
copy this information into the Notes option of the report writer. This way if someone
changes a value, you will know what your settings were.

This is not a requirement, just a useful tip.

Exercise 7.3

1. Create a report writer for custom labels. Use your initials as the prefix to your
design id.

2. Select out customers only that have a customer type of NE.NORM.
3. Fill in your desired label specifications and test by sending the report to your hold

file.

Note: Use the sample option on the Run Driver Screen by positioning your cursor on the
prompt and entering the number of records you wish to use in your test, or specify your
test input on the label specification screen as discussed.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 107

Lesson 8
Creating a Mass Load

Objectives
After you complete this lesson, you will understand:

• What can be mass loaded in Eclipse
• How to use the Default/Set Value column

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 108

Mass Load

Mass Load enables you to update information in the Eclipse database. It is commonly
used to enter information, such as credit parameters for customers or inventory control
parameters for products.

The Mass Load program lists the records and fields to be updated on the Mass Load
Update screen. You can manually update these fields one record at a time or, if each
record is being updated with the same information, you can let the system update all the
records at once.

There are three major steps in creating a mass load:

• Designing the Mass Load – First you design the Mass Load Update screen
layout, including the file and fields to be updated.

• Selecting the Mass Load Data – After you have designed the mass load screen

layout, you need to specify the criteria for selecting the records to be updated.

• Running the Mass Load – After you have designed the mass load screen layout
and selected the records to be updated, you need to perform the updates.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 109

Rules for Mass Loading
The following two rules apply to mass loading:

• You cannot mass load information into an I-Descriptor. You can only mass load
into D-type dictionary items, which represent actual fields in a record.

• You cannot mass load information into a dynamic file.

Examples of dynamic files that cannot be mass loaded are:

• PROD.DYNAM • PSUB
• LEDGER • PHYS
• ORDER.QUEUE • AR

Examples of static files that can be mass loaded are:

• ENTITY • BUY.LINE
• PRODUCT • INITIALS
• PRICE.LINE • ZIP

The most common files where mass loading occurs are the ENTITY and PRODUCT
files.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 110

Designing the Mass Load

Use the mass load view of the Report Writer/Mass Load Design screen for designing the
layout of the Mass Load Update screen. From the Files menu, select Mass Load/Update
to display this view.

In the header portion of the screen, assign an ID to the design and designate the file that
contains the records to be updated.

In the body of the screen, you must describe each column you want to display on the
Mass Load Update screen. Some columns just display information that identifies the
record and other columns identify the fields to be updated. Sequential numbers identify
the columns on the screen, with 1 being the leftmost column, 2 being the next column to
the right, and so forth.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 111

For each column of the display you must:

• Identify the dictionary item (or formula) to be displayed in the column.

• Specify the width of the column.

The system populates this field with the width defined for the dictionary item.
You cannot change the width of a dictionary item you plan to update. If you
change the width, the field becomes display-only.

• Indicate whether the data in the column is for display only or to be updated.

• If the data is to be updated, specify how and with what value.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 112

Identifying the Data Type

The value you enter in the Typ field indicates whether the data in that column is display-
only or can be updated.

Data Type Data in this mass load column…
D (Display) is display-only and cannot be changed. The system displays an asterisk (*) following

a D when the field is a dictionary item that does not allow updates. Note: Any time
the width of a column on the mass load is changed an asterisk will appear and will
deem the data element display only.

U (Update) can be manually updated.

• If the Default/Set Value field on this screen is left blank, you can manually enter

the data for each record on the Mass Load Update screen.
• If the Default/Set Values field on this screen contains a value, you can enter this

same value for each record, one at a time, on the Mass Load Update screen as
you scroll through the records using the Enter key.

S (Set) will be updated by the system according to the data entered in the corresponding
Default/Set Value column.

Caution: Do not use this Typ code until you are sure that you are updating the
correct field with the correct data.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 113

Setting a Replacement Value

When the Typ code for a column of data is S or U, the data entered in the Default/Set
Value field determines what will be placed in that field.

Value Function
“” A set of quotes with nothing between them replaces the current value in the

designated field with a null value.
“ ” A space enclosed in quotes replaces the current value in the designated field with a

space.
“text” Text enclosed in quotes replaces the current value in the designated field with the

actual text.
Dict ID A dictionary ID replaces the current value in the designated field with the value

currently stored in that dictionary ID.
3+2 A number or numerical expression replaces a value in a designated numerical field

with the value of that number or expression.
: A colon can be used to concatenate two values. This means you are combining

data together to create new data. For example, Dict ID:“TEST”
| A separator indicates the data will be added and should be word wrapped to the

length specified for that field in the mass load.
“value”=”new-value” This is a Find and Replace method of mass loading. The mass load routine will

find the string of characters entered in the first text string and replace it with the
value entered in the second text string.

%AM%, %VM%,
%SVM%

Allow you to specify new line characters or record delimiters in your data.

blank If the Typ code is “U” and you leave this field blank, you can manually update
this field for each record on the Mass Load Update screen. If the Typ code is “S”,
do not leave this field blank.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 114

Leaving the Default/Set Value Field Blank

If you enter U in the Typ field and leave the Default/Set Value field blank, you can
manually update this field for each record on the Mass Load Update screen.

Exercise 8.1
1. Create a mass load, using the select criteria assigned by the instructor, to manually

update the first contact name assigned to each customer record.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 115

Replacing a Value with a Text String

If you enter U in the Typ field and text enclosed in quotation marks in the Default/Set
Value field, you can replace the current value with that text.

For example, when one salesperson replaces another, select all the records assigned to the
original salesperson and display the SALEMAN dictionary item for each record in update
mode. Enter the new salesperson’s ID, enclosed in quotation marks, in the Default/Set
Value field. When you process each record, the system will overwrite the original value
with the new value.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 116

You can also search for and replace part of a field with a text string.

In the following example the vendor name ‘AO SMITH’ was loaded as ‘AOSMITH’ in
the Description field and a space is needed to separate the two words.

The first value in quotes represents the string of data you want to search for. The equal
sign is a replacement operator, indicating that the first value should be replaced by the
text within the following set of quotation marks.

As you step through the records listed on the Mass Load Update screen, the space is
inserted between the two words, as shown below:

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 117

Exercise 8.2
1. Using select criteria assigned by your instructor, create a mass load that will assign a

designated ship via to a group of customers.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 118

Setting a Value to Null

A set of quotes with nothing between them replaces the current value in the designated
field with a null value. This erases any information that previously existed in the field.
Be very careful when using this option.

For example, your purchasing department has assigned new procurement groups to all the
buy lines and now you want to remove all the procurement groups assigned at the product
level.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 119

Replacing a Value with another Dictionary ID Value

To replace the value in one dictionary item with the value from another dictionary item,
enter a dictionary ID in the Default/Set Value field.

For example, if your company adds a new branch, you need to update the PRODUCT file
to include sell group assignments for the new branch. The following mass load copies the
branch 1 sell group assignment (SELL_GRP,1) to the new branch (SELL_GRP).

Note that SELL_GRP is a multi-valued dictionary item. It contains the sell group
assignments for all the branches. The asterisk next to the column number indicates that
you must enter column data to specify which multi-value (branch) you are updating.

SELL_GRP,1 : using the comma and branch number after the dictionary item will
pinpoint the data in the branch specified to be copied into the new branch loaded in the
column data.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 120

Replacing a Value with a Text String

You can replace a text string with new information.

In the following example, you can use the mass load program to replace the abbreviation
“Ave” with the word “Avenue” in the ADDRESS dictionary item.

Warning: Be careful when running a mass load of this nature. Think clearly what would
occur if this load was run 2 times or 3 times?

Exercise 8.3
1. Using the selection criteria assigned by the instructor, create a mass load that will

change the address to display “Street” instead of the abbreviation “St”.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 121

Replacing a Value with a Concatenated Value

Use a colon to concatenate two values in the Default/Set Value field.

Consider the following problem: You are trying to update your prices using the auto price
update program, but your products do not have a UPC number for you to match to a
diskette. So, you are forced to use the model number of the product to update your prices.
Because another price line might use the same model number, you need to make the
model number unique to the line you want to update. You can do this by concatenating a
unique prefix to the model number and then storing this new ID in a user-defined field.

In the following example, the mass load concatenates the text string “AOS” to an
I-Descriptor dictionary item that extracts the first word of the product description. This
information is placed in a position of the multi-valued PU.IDS (Price Updating ID
Maintenance) dictionary item, based on what you enter for the column data prompt.

Exercise 8.4
1. Using the selection criteria designated by your instructor, create a mass load to update

the Commodity Code field in the PRODUCT file with the sell group in branch 1
concatenated to your initials.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 122

Replacing a Value with a Numerical Expression

You can replace a numerical value with another number or a value calculated by a
numerical expression.

You can use the mass load in the following example to increase the credit limit of each
selected record by 2 percent.

Exercise 8.5
1. Using the selection criteria assigned by your instructor, increase the credit limit for

each customer by 4%.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 123

Word Wrapping

The pipe sign (|) at the end of the Default / Set Value causes the data to word wrap if the
updated information is longer than the character width of the dictionary item or field
being updated.

For example, the description of products in the PRODUCT file may not contain
information that is required. The mass load in the following example appends the word
“HONEYWELL” to the DESC dictionary item The column data for DESC, the
dictionary item being updated, is set to the first multi-valued position, because that is the
line of the description that is being updated.

The pipe sign at the end of the string ensures that you can insert information as the first
word of the description without losing any of the description if it exceeds 35 characters. It
tells the program to word wrap to the next line if there is not enough space.

Exercise 8.6
1. Using the select criteria assigned by your instructor, append your First Name to the

description of your products. Make sure that the description will word wrap

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 124

Lesson 9
Dictionary Maintenance and I-Descriptors

Objectives
After you complete this lesson, you will be able to:

• Understand the Dictionary Maintenance Screen
• Understand how to create I-Descriptors
• Use the elements in an I-Descriptor formula
• Test the I-Descriptors you create

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 125

Dictionary Maintenance

Before we can create Interpretive Descriptor elements first we must understand all of the
elements that make up the Dictionary Maintenance Screen.

The dictionaries are stored in the file called EDICT which stands for Eclipse Dictionary.

The following tables outline all of the different options available in the dictionary
maintenance screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 126

Dictionary Field Definitions

The following table describes the fields in the middle portion of the dictionary
maintenance screen.

Field Description

Dict Type Character representing the dictionary item type.

• D (Data Element) – Identifies a physical field of data, such as a name, user
ID, number, address, description, or quantity.
• I (I-Descriptor) – Identifies a symbolic field the system can use for calculating
values.

Attr# Attribute number, which indicates the numerical position of the field within the record
for the dictionary ID.

This field applies to Data element type dictionaries only.

Use the Dictionary Maintenance Summary screen to view the defined dictionary items
and corresponding attribute numbers for a file.

Val# Numerical position of a value in a multi-valued field. For example, in a customer file
with six contacts, the third contact would be identified as value 3.

Subval# Numerical position of a sub-value in a multi-valued field. For example, in a customer
file with six contacts, each of which contains a contact name and a phone number, the
phone number of the third contact person would be sub-value 2 of value 3.

Description Description of the dictionary item.

Prompt Default column heading for the selected data when printed on a report, and the prompt
if used in a Report Writer/Mass Load select statement with a variable value.

The system populates this field with the Dict ID, but you can enter your own heading or
prompt in this field.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 127

Field Description

Justify (L/R) Indicate whether this data item should align on the right or left side of the report
column.

Typically, text is left justified and numbers are right justified. Dates should be right
justified.

Maximum Width Enter the default maximum character width for the value.

Multi-Valued (Y/N) Indicate whether this dictionary item can accommodate more than one entry.

For example, in the entity file the ADDRESS dictionary item is multi-valued,
allowing two lines of street address.

Note: If a dictionary item identifies a single value or sub-value of a multi-valued
field, set this field to N.

Sub-Valued (Y/N) Indicate whether this dictionary item contains sub-values within a multi-valued field.

For example, a record in the customer file can have six contacts, which are multi-
values. Each contact has a name and phone number, which are sub-values.

Required (Y/N) Indicate whether an entry for this dictionary item is mandatory when creating a
record in the file.

Allow Update (Y/N) Indicate whether this dictionary item can be updated using mass load or user-
defined screens.

Case Mapping Indicate whether the data stored in this field is set to Upper Case, Lower Case,
Title Case (initial uppercase), or Alpha Only (all alpha characters are uppercase).
Press F10 to select an option.

Changing the case mapping has a from-this-point-forward effect; the system does
not change existing data.

SFA Category If the displayed dictionary item will be used in the Sales Force Automation
application, press F10 and select an SFA category with which to associate this
item.

Format (Output) When needed, enter a standard Pick output conversion code that determines the
report display format for the data stored in this field. The codes can be found in
Lesson 5 of this document. They can be utilized in the format column when you
create a report writer report without the need of entering it here on the dictionary.

Update Subroutine Identify a subroutine to be used to process the data entered from a screen or mass
load to update the field.

Date / Year If this is a date field, enter an asterisk (*). Define the format of the year by entering
the number of digits to be displayed. The number of digits can be 0, 2, or 4.

Ensure that the Maximum Width is set to allow for the separators, a two-digit
month, a two-digit day, and the selected number of digits for the year. If the
Maximum Width is not large enough, the date wraps to the next line.

Numeric / Decim / Negs If this field is numeric, enter an asterisk (*). You must define the number of decimal
places, and indicate whether negative numbers are allowed.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 128

Y/N Only If this field requires a Y or N response, enter an asterisk (*).

'*' Only If this field must contain an asterisk (*) to be activated, enter an asterisk (*.)

Word Wrap Disp Lines
/ Max Lines

If the data in this field can wrap from one line to the next, enter an asterisk (*).

• Disp Lines is the number of lines to display on the screen.
• Max Lines is the maximum number of lines you can enter for this field.

Eclipse Dictionary If this dictionary item is part of the core Eclipse system, this option displays an
asterisk (*) and you cannot modify it.

Archived If this dictionary item has been archived, this option displays an asterisk (*).

An archived dictionary item is obsolete, but is still being used by various user-
defined report writer reports and user-defined screens. If you access a report or
screen that uses an archived dictionary item, the system displays a warning. We
recommend that you replace it with a current dictionary item, but you can also
ignore the warning. Customers who went ‘live’ on Eclipse on Release 8 will not
see dictionary items set to Archived.

An archived dictionary item does not display the first time you press F10 to add
items to mass load, report writer, order entry prompts, and user-defined screens.
Press F10 again to access archived items.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 129

Hotkeys in Dictionary Maintenance Screen

Hot Key Function

Copy Creates a dictionary item for the displayed file or another file, by copying the displayed
dictionary item.

Delete Deletes the displayed dictionary item from the dictionary file. The system prompts you
to confirm the deletion.

Note: You cannot delete a dictionary item that is open for editing. The system deletes
the latest revision, but does not delete the dictionary item.

Valid Makes the dictionary item a validated field. Validating data can be accomplished
using a manual list, from a control record that contains the list, another file’s @ID or a
verification subroutine that will verify the data.

I-Desc Displays the I-Descriptor Program Maintenance screen, where you can enter a
formula that determines the value of this dictionary item.

Expand Displays an expanded view of the Prompt or Description field.

• The expanded Prompt field contains 3 lines the same width as the value in the
Maximum Width field.
• The expanded Description field contains 3 lines that are 60 characters wide.

You can erase the displayed text and type new text for this field. Use this screen to
determine whether the text fits on one line or wraps to a new line.

Prompt Lists the standard prompts that you can use with this dictionary item.

When creating a dictionary item, press F10 to display the list of available prompts.

Log Displays the Maintenance Log Viewing screen for the displayed dictionary item.

Test Selects a record from the file and displays the output defined by this dictionary item.

Access Displays the Access Control List screen, where you can designate user IDs or group
IDs that can access the data in this record from a laptop or Palm computing device
and the level of access for each ID.

Key Use to identify the names of files for which this dictionary item is the key.

For each entry, press F10 and select a file name.

Undo Eclipse Dictionaries are now being tracked with version numbers. If the undo option is
used on a dictionary item that is a Version 1, the system will delete the dictionary as if
you used the delete hotkey. If however, the dictionary item is a 2nd or 3rd version, the

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 130

undo option would back out the version to the previous version number.

Close If you edit a dictionary item in the system that is not marked as an Eclipse Dictionary
(those will be view only) the system will keep the dictionary open to you until you have
completed it. When you are done, you should close the dictionary. You will know if
the dictionary is open or closed based upon the “Open To: “, message that will
appear in the upper right hand corner.

Program The program hotkey will open a window to create a subroutine that will exist only at
the dictionary item level. Any subroutine created here will not be a Basic Program but
a Dictionary Program stored at the dictionary level.

Note: Programming dictionaries will not be discussed in this class. This option is
instructed in the “Basic Programming” class.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 131

Creating an I-Descriptor

An I-Descriptor (interpretive descriptor) is a symbolic field derived from real data or a
formula applied to real data. You can use I-Descriptors to manipulate strings of
information or calculate values for selecting, sorting, and displaying data on reports.

For example, in the ENTITY file the dictionary item called ADDR.LINE2 is an
I-Descriptor that refers to the second line of the entity’s address. The formula that defines
this I-Descriptor selects the second value of the second attribute in the record.

Use the Eclipse Dictionary Maintenance screen to create I-Descriptors.

Fill in the appropriate File Name and Dict ID for the I-Descriptor. Enter the letter I in the
Dict Type field. An I-Descriptor describes a symbolic field for a file. Fill in the data
format to determine how the output of the I-Descriptor will be displayed when the
I-Descriptor formula is processed.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 132

Use the I-Desc hot key to open the I-Descriptor Program Maintenance screen, and then
enter the I-Descriptor formula.

Elements in an I-Descriptor Formula

An I-Descriptor formula can contain any of the following elements:

• Field names

• Operators

o Arithmetic
o Relational
o Logical
o Conditional

• Constants

o Numeric
o String

• Internal variables

• Substring extraction expressions

• File transfer function (the TRANS function)

• Other BASIC functions

Note: Do not use symbols or operators in your I-Descriptor names.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 133

Field Names

An I-Descriptor can refer to data in another field by specifying the dictionary item name
in the formula. The dictionary item must refer to an element that is defined in the
dictionary file where the I-Descriptor is compiled. When Eclipse processes the
I-Descriptor formula, the current data value of the dictionary item is used.

For example, an I-Descriptor formula that uses the values from the Surplus and Rep
Cost fields to determine the value of the surplus, uses the names of these dictionary items
in the formula as follows: (SURPLUS * REPCOST).

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 134

Operators

I-Descriptor s can use arithmetic, relational, logical, and conditional operators in their
formulas. To avoid unintentional conflicts with operators, Eclipse suggests that you do
not use symbols or operators in your dictionary names. For example, use BAL.60.PLUS
instead of BAL.60+ and use PROD.NUMBER instead of PROD#.

Operators are listed in the table below in order of precedence. Multiple symbols exist for
operators of the same description and may be used interchangeably. Eclipse suggests
always using parentheses in a formula to control operator precedence.

Operator Description
**
^

Exponentiation

* Multiplication
/ Division
+ Unary plus
- Unary minus
+ Addition
- Subtraction
:
CAT

Concatenation

<
LT

Less than

>
GT

Greater than

=
EQ

Equal to

NE
<>

><

Not equal to

<=
=<
LE

Less than or equal to

#> Not greater than (same as LE)
>=
=>
GE

Greater than or equal to

#< Not less than (same as GE)
MATCHES
MATCH

String matches pattern

AND
&

Performs a logical AND function on two formulas to produce a true (1) or false
(0) result. If both formulas are true, the formula evaluates to 1 (true).

OR
!

Performs a logical OR function on two formulas to produce a true (1) or false (0)
result. If either formula is true, the formula evaluates to 1 (true).

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 135

Testing I-Descriptors

Use the Test hot key on the Eclipse Dictionary Maintenance or I-Descriptor Program
Maintenance screen to test an I-Descriptor. This displays the Dictionary Testing screen,
where you can enter record IDs from the file for which the I-Descriptor is defined.

Note: When common data is required for an I-Descriptor, use the Set Common hot key
to enter that data before using the Test hot key.

After entering the record IDs for the test and indicating whether to list fields whose
values are blank, use the Begin hot key to do the test. The system displays the contents of
the field described by this dictionary item for each test record.

In this class, due to the volume of students we ask that you test the dictionary items you
create by using the LIST command in TCL.

Exercise 9.1
Find an I-Descriptor in the file assigned by your instructor and test the dictionary item.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 136

Lesson 10
Creating Mathematical I-Descriptors

Objectives
After you complete this lesson, you will be able to:

• Formulate mathematical expressions using Dictionary Maintenance
• Test your dictionary items

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 137

I-Descriptors that use a Mathematical Formula

The I-Descriptor formulas in the following examples use mathematical operators. When
dealing with a mathematical formula, be aware of the decimal positions. If dictionary
items in a formula do not have the same number of decimal positions, you may not get
the desired result.

Example 1

In this example the mathematical formula is derived from two existing dictionary items.
Between the dictionary items is the mathematical function that takes place. The
I-Descriptor called OVER_CRLIMIT is calculated by subtracting the output of the
dictionary CR_LIMIT from the output of the dictionary AR_BAL.

Example 2

This example also creates a formula using two dictionary items. The COST.DIFF is
calculated by subtracting the output of FIRST.COST from the output of LAST.COST.

This dictionary item would be an archived dictionary if you were upgraded from a
Release 7 to a Release 8 account.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 138

Example 3

The formula in this example utilizes three dictionary items. It calculates the sum of the
three values.

Example 4

The asterisk is used for multiplication. The formula in this example multiplies the values
of two existing dictionary items.

Example 5

The following formula adds the values of two dictionary items. Note that there is a minus
sign before the first dictionary item.

If you view the raw data in the PSUB file, the sale amount of outgoing inventory displays
as a negative value. The minus sign in this formula changes the value of the dictionary
item to a positive number. Therefore, the output of the INV.AMT becomes a positive
value, which is then added to the TAX.AMT

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 139

Example 6

The following formula uses multiple operators. You are not forced to create formulas
based only on dictionary items that already exist. In this example a hard-coded text string
of information is used within the formula. The formula calculates the Gross Profit
Percentage by multiplying the value of the GP$.CMP dictionary item by 1000, and then
dividing that amount by the value of the SUB.AMT dictionary item.

Example 7

The final example shows two subroutines used in a subtraction formula.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 140

Exercise 10.1
1. Create a dictionary item in the PRODUCT file that multiplies the on-hand quantity by

the replacement cost of the product.

2. Test your dictionary item using the Test hot key or using the LIST command in TCL.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 141

Lesson 11
Creating Internal Variable I-Descriptors

Objectives
After you complete this lesson, you will be able to:

• Create dictionary items that return values or sub-values of an attribute
• Use the @ID variable in an I-Descriptor
• Create I-Descriptors using internal variables
• Use the @RECORD, @ID, and @VM internal variables

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 142

Internal Variables

An I-Descriptor can use a number of pre-defined variables within the formula. Some of
these variables are “short cuts” for other functions.

Internal Variable Returns…
@n the value of the previous expression, where n is a sequential

number. That is, the result of the first expression is assigned to
internal variable @1, the result of the second expression is assigned
to internal variable @2, etc.

@AM an attribute mark (the same as using the function CHAR(254)).
@ID the record identifier (also known as the Item ID or the Record ID),

which is the “key” to the record. For example, in the Customer file,
@ID returns the customer number; in the Product file, @ID returns
the product number.

@RECORD the entire record, including attributes, multi-values and sub-values.
@RECORD is a dynamic array (a table of data) containing these
elements.

@SVM a sub-value mark (the same as using the function CHAR(252)).
@VM a value mark (the same as using the function CHAR(253)).

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 143

Using the @RECORD Variable

The @RECORD variable can return an entire record, an entire attribute in a record, or a
value within an attribute.

Example 1

This dictionary item returns the first attribute of a record in the PRODUCT file. This
returns all of the information in the attribute, regardless of whether it is multi-valued

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 144

Example 2

This dictionary item returns a product’s UPC number, which is stored in the first value of
attribute 63 of each PRODUCT file record.

Attribute 63 stores the UPC in the first value, User Defined #1 in the second value, User
Defined #2 in the third value, User Defined #3 in the fourth value, and User Defined #4
in the fifth value. This I-descriptor is saying, go to attribute 63 in the PRODUCT file and
return only the value that is stored before the first value marker.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 145

Example 3

This dictionary item returns the 3rd multi-valued position of attribute 26 of each
PRODUCT file record.

The following TCL display of raw data shows a PRODUCT file record. Attribute 26
displays 3 value markers, which indicate that there are 3 sets of information in this
attribute. The 3rd value of this string shows us that ARTHURW created this product. The
1st and 2nd values show the date and time the product was created.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 146

Example 4

Not only is the following dictionary item returning the specific information from the
ENTITY file, but it is performing a BASIC function as well.

If @RECORD<7,1> contains a value of 1, the record is a bill-to. If @RECORD<7,2>
contains a value of 1, the record is a ship-to. A customer can be a bill-to, ship-to, or both.
The following dictionary item displays a value of 1 for ENTITY records that are flagged
as being a ship-to-only customer; otherwise, it displays a value of 0.

The following screen shows a customer that is flagged as a ship-to customer.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 147

Following is a partial TCL listing of the raw data in this customer’s record. The asterisk
from the Job or Ship To field above is reflected as a 1 in the second value of attribute 7.

Exercise 11.1
1. Using your initials and the word BILLTO, create a bill-to-only dictionary item for the

ENTITY file, similar to the ship-to-only dictionary item described above.

2. Test the dictionary item using @ID 41725. This is a bill-to-only customer in the

ENTITY file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 148

Using the @VM Variable

Using @VM inserts a carriage return in the dictionary item. In the following example,
L#16 defines the number of left-justified character spaces to be allocated for displaying a
piece of data.

The following dictionary item uses and IF THEN ELSE statement (discussed in more
detail later) to display a customer’s name and address. If a second address line exists, the
dictionary item displays four lines of information; otherwise, it displays three lines of
information. The city, state, and Zip code are concatenated and displayed on the same
line. Because 16 character spaces are allocated for each city name, the state and Zip
codes align. The @VM variable inserts the line breaks.

The following list shows the output for this dictionary item.

This dictionary was used when we created our mailing labels report.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 149

Exercise 11.2
1. Using your initials and the word PROD as the dictionary ID, create a dictionary

item that will display three lines of information.

• On the first line, display the first line of the description.
• Leave the second line blank.
• The third line should display the price line of the product, the status of the

product and first sell group of the product.

Make sure that the third line of information is spaced properly.

2. Test the dictionary item.

The test output should be similar to the following example:

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 150

Lesson 12
Creating Field Command I-Descriptors

Objectives
After you complete this lesson, you will be able to:

• Create I-Descriptors using the FIELD function

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 151

FIELD Function

The FIELD function takes part of a delimited string and returns the specified occurrence
of the contents within the string. The syntax is:

FIELD(STRING,DELIMITER,POSITION)

• Field is the command being used.

• String is the element from which we are extracting a piece of information.

• Delimiter is the character or space that separates data within the string.

• Position is a number that represents where the data is stored within the string.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 152

Example

The following I-Descriptor formula extracts the 2nd word of the description in the
PRODUCT file. The FIELD function states the following three pieces of information:

• The string of data from which you will obtain the information is the first line of
the first attribute in the record.

• The character that delimits words in the description is a space.

• The word you want is in the 2nd position.

The following TCL listing shows the values that would be listed for this dictionary item:

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 153

Using the PSUB File

When an order is created, the order information is stored in the LEDGER and
ORDER.QUEUE files. Once an order is processed, the summary information moves from
the ORDER.QUEUE file to the AR (Accrual Register) file and the product detail
information moves to the PSUB (Product Subsidiary) file.

The PSUB file contains line-item detail for closed ledger transactions, such as sales
invoices, received purchase orders, transfers, and inventory adjustments. Each product on
a transaction creates one record in this file. Each product creates two records if the
shipping branch is different from the pricing branch.

The key to the record is comprised of a concatenation of information unique to an
inventory movement, as shown in the following example. A tilde (~) delimits items that
comprise the record ID.

40929~1~11499~S1000000~1~2~S~WHSE

These items contain the following information each field separated by a tilde:

• Field 1 – PRODUCT_ID = product Id
• Field 2 – BR = branch on transaction
• Field 3 - SHIP_DATE = date material shipped
• Field 4 – ORD_ID = order number for the transaction
• Field 5 – INVOICE_NBR = the order generation for the transaction
• Field 6 – LED_DET_ID = the position of the product on the transaction
• Field 7 – QTY_TYP = the type of material that shipped (Stock, Defective,

Tagged etc). If the order is a direct shipment this field will be a “D”.
• Field 8 – LOCATION = the bin location the material shipped from or was

received into. If the order is a direct shipment this field will be the internal id for
the vendor.

• Field 9 – COMPONENT_POS = the component part numbers if the item was a
kit.

• Field 10 – DIFF_BR = the shipping branch if it is different from the BR (field 2)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 154

Example 1

The following dictionary item returns the Internal Part number from the @ID of the
PSUB record. This dictionary item can be used as the key to obtain access to the
PRODUCT and other files where the @id of the file is the internal ID of the PRODUCT.

Example 2

The following dictionary item selects the order number from the @ID of the PSUB file.
This dictionary can be used as the key to obtain access to the LEDGER file.

Example 3

The DIFF_BR dictionary item in the next example can be used to isolate products that are
shipping out of a different branch than the pricing branch.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 155

The product serial number is also stored in the PSUB file; however, it is in a file attribute
rather than the @ID of the file.

Exercise 12.1
1. From the ENTITY file create a dictionary item that returns the 2nd word of the first

line from the Address field.

Exercise 12.2
1. From the PRODUCT file, create a dictionary item that returns the 3rd word of the

second line of Keywords.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 156

Lesson 13
Creating TRANS Command I-Descriptors

Objectives
After you complete this lesson, you will be able to:

• Create and use TRANS command I-Descriptors

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 157

TRANS Function

The transfer functionality in dictionary maintenance or the ability to access data from
another file is very similar to the Files Option on your report writer / mass load screen.

The TRANS function accesses data in another file and returns a value for use in the
I-Descriptor formula. In other words, it “transfers” the data.

You can do this if a field in the source file is a “key” for records in the other file. For
example, you are running a report from the PSUB file and want to display the customer
name, which is stored in the CUSTOMER file. A field in the PSUB file contains the
customer number. You can use this number to access the corresponding record in the
CUSTOMER file and then transfer the customer name from that record back to the PSUB
file.

Example 1

When running a report from the PSUB file you want to list the customer name with each
transaction, but the name is not stored in the PSUB file. So, you need to create a
dictionary item in the PSUB file that uses the TRANS function to transfer the name from
the CUSTOMER file. The syntax of the TRANS function is as follows:

TRANS(FILENAME,KEY,ATTRIBUTE #,“X”)

• Trans is the command.

• Filename is the name of the file that contains the information you require.

• Key is the string of data from the file you are currently in that matches the @ID
or Key of the records in the file from which you want to obtain information.

• Attribute is the attribute number in the record from which you are retrieving the

information where the required data is stored.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 158

• The transfer code “X” indicates that if the attribute contains no data, TRANS
returns a null value. Use the transfer code “C” to instruct the function to return the
@ID for debugging purposes.

In the following screen, the TRANS function uses the data in the 4th field of the PSUB
record to access the correct record in the ENTITY file and return the value of attribute
number 1.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 159

Example 2

In this example, from the PRODUCT file you access the BUY.LINE file and retrieve the
name of the buyer. The key to the BUY.LINE file is contained in attribute 12 of the
PRODUCT file. The buyer’s name is stored in attribute 17 of the BUY.LINE file.

If a dictionary item corresponds to the key to another file, then that dictionary item can be
used instead of the @RECORD statement. The dictionary item BUY_LINE in the
PRODUCT file, points to attribute 12.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 160

Example 3

The AR file contains multiple attributes that can link back to the ENTITY file. As shown
below, attribute 10 contains the entity’s bill-to ID and attribute 15 contains the ship-to ID.
These ID’s can be the same or they can be different for any given transaction.

Example 4

This TRANS function accesses the ENTITY file using the dictionary item that provides
the key to the ENTITY file. It returns the value of the first attribute of the ENTITY file,
which is the name. If there is nothing found, a null value is returned.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 161

Example 5

The following TRANS function accesses the ENTITY file using the 15th attribute in the
AR file as the key. It returns the value of attribute number 17 from the ENTITY file. This
is the multi-valued PHONES attribute. It then uses the <1,1,2> sub string extraction
expression to select the second phone number.

<x,y,z> allows you to extract the “x” file, the “y” value, and the “z” multi-value from
the record. You do not need to specify x, y, and z if you only need to retrieve x and y (<x,
y>) or just x (<x>). Use the <x,y,z> with the @RECORD variable to return specific
elements of a record.

When using the <x,y,z> on a trans routine, you must define all three segments to pinpoint
the value marker you want to return as shown below.

Exercise 13.1
1. From the AR file create a dictionary item that returns the outside salesperson from the

ENTITY file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 162

Exercise 13.2
1. From the AR file, create a dictionary item that returns the writer from the LEDGER

file.

Note:
The key to the LEDGER file consists of just the first 8 characters of the @ID of the
AR file. You need to create a dictionary item that defines this key. Use the following
FIELD statement to return the first 8 characters:

FIELD(@ID,’.’,1)

The LEDGER file holds multiple generations. Information can be different in the
header screen for each generation. Eclipse has created subroutines that work through
the multiple generations to pull back the information that you are looking for.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 163

Using the ORDER.QUEUE File

Use the ORDER.QUEUE file to run reports on all the open orders in the system. These
orders have not yet gone to the AR or the PSUB file. This is a summary file that doesn’t
contain many details. Therefore, you need to create I-Descriptor dictionary items that
transfer detail information from other files.

The following I-Descriptor uses attribute 7 (the bill-to customer ID) of the
ORDER.QUEUE file as the key to access the ENTITY file and then transfer attribute 1
(the customer name) from that file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 164

Using the PSUB File

The PSUB file contains line-item detail for closed ledger transactions, such as sales
invoices, received purchase orders, transfers, and inventory adjustments. Each product on
a transaction creates one record in this file. The system creates two records for each
product if the shipping branch is different from the pricing branch.

The following example shows a record from the PSUB file. The record key is comprised
of a concatenation of information unique to an inventory movement. The customer ID
associated with the transaction is stored in the 4th attribute.

The following I-Descriptor formula uses attribute 4 as the key to the ENTITY file and
transfers attribute 1 (the customer name) of that file back to the PSUB file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 165

The following I-Descriptor uses a portion of the PSUB record ID to access the LEDGER
file and return the value in attribute 13 (the customer’s P/O number).

The next I-Descriptor uses a different portion of the PSUB record ID to access the
PRODUCT file. The following example returns the product description from attribute 1.

Using a Double TRANS Command

The following example shows how to use a double TRANS command.

The value obtained from the inner TRANS command is used as the key to records in the
file named in the outer TRANS command. The inner command uses the first value of the
AR file’s @ID as the key to records in the LEDGER file. The command obtains the value
from attribute 13 in LEDGER file. The outer command then uses this value as the key to
records in the GENLED file. Once there, the command retrieves the bank description,
which is stored in attribute 3.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 166

Using Notes Files

On the Vendor Maintenance and Customer Maintenance screens there is a hot key called
Notes that you can use to enter internal notes. Information entered in this field is stored in
the ENTITY.NOTES file. The key (record ID) for records in this file is the same as the
key for the customer and vendor records in the ENTITY file.

The following example uses the @ID of the ENTITY record to retrieve attribute 3 from
the ENTITY.NOTES file.

You can also go the other way. The following example uses the key of the
PRODUCT.NOTES file to access the PRODUCT file and transfer the value in the 9th
attribute.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 167

Exercise 13.3
1. From the PSUB file, create a dictionary item that returns the weight of the product.

Exercise 13.4
1. From the ORDER.QUEUE file create a dictionary item that returns the ship-to Fax

number.

Exercise 13.5
1. From the PRODUCT file create a dictionary item that returns the buyer’s name.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 168

Lesson 14
Basic Functions

Objectives
After you complete this lesson, you will be able to:

• Use the basic functions LEN, TRIM, OCONV, and STR
• Write a conditional expression using IF, THEN, and ELSE

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 169

Basic Functions

Many BASIC functions can be used in I-Descriptor formulas. The same syntax applies
whether using a BASIC function in an I-Descriptor or in a BASIC program.

The following topics describe a few commonly used functions.

LEN Function

The LEN function returns the length of a string. For example, if a product’s description is
“BLACKFORD 10661615 WATERHEATER” and an I-Descriptor formula uses the
function LEN(DESC), the value returned is 30.

The I-Descriptor formula in the first example returns the character length of the product’s
buy line. You can use this function to identify records in which the buy line contains too
many characters.

The I-Descriptor formula in the second example adds the length of the A/R record, the
length of the record ID, and the number 9. This formula calculates the number of bytes in
the record.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 170

The following listing shows the output of this dictionary item.

IF THEN ELSE Operators

Use the IF/THEN/ELSE operators in I-Descriptor formulas to create a conditional
statement. The basic syntax is:

IF formula one THEN formula two ELSE formula three

If the first formula is true, then process the second formula. If the first formula is false,
then process the third formula. Both the THEN and ELSE operators are required by the
formula syntax.

Example 1

The conditional formula in the following example, displays the data from the city, state,
and Zip code dictionary items on one line. The city is concatenated to a comma and
space, the state, another comma and space, and then the Zip code. Use this I-Descriptor to
display the information in one column of a report rather than three separate columns.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 171

Example 2

The I-Descriptor in the following example enables you to sort your CUSTOMER file by
bill-to, by ship-to, by customer Sortby order. This dictionary is used primarily for sorting
data for your reports. You can also use it to sort your records when listing them on
screens in Eclipse. After each bill-to customer, the ship-to customers are listed in order
according to the value in the customer record Sortby field.

The formula for this I-Descriptor consists of three expressions. You can enter each on a
separate line or enter them on one line with each expression separated by a semicolon, as
shown in this example.

In the first expression, the ENTITY.TYPE.1 dictionary item is the flag that indicates
whether the customer is a bill-to or not. When the flag is set to “1” the record is a bill-to.
When the flag is set to “0” the record is a ship-to. If the dictionary item contains a “1,”
then assign a value of “1” to this expression. Otherwise, assign a value of “2” to the
expression.

The second expression @RECORD<8> identifies the field that contains the SORTBY
information in the Customer file.

The third expression @1:@2 concatenates the value of the first expression (“1” or “2”)
with the value of the second expression (the data from the Sortby field).

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 172

Entering this I-Descriptor on the File Definition Maintenance screen in the Select SortBy
Dict ID field enables you to sort your index differently.

Using IF THEN ELSE to Fix a Problem

What can we do to fix the following I-Descriptor formula?

This dictionary returns errors if the value is zero.

Use the IF, THEN, ELSE statement to make sure no errors occur.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 173

Examples of other IF THEN ELSE Dictionaries

From the Product File:

The above dictionary will pass back the correct quantity value based upon the UOM flag on the
front screen of PFM for Purchasing.

Then it will use this to determine what the actual UOM Qty is based upon that flag.
This dictionary * 1 will provide an accurate mass load to the buy package quantity.

From the Entity File:

The above dictionary narrows down a selection of customers who purchase from more than one
branch in the company.

The above dictionary item is sweeping through the branches to see if the sales that occurred in a
branch match the total sales for all of the other branches. If the sales do not match then the
customer is one who purchases from multiple branches.

Each line represents a branch. For this company they only had branches 1,2,4,5,6 and 7. They
do not have a branch 3.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 174

Character Strip

Example 3

The I-Descriptor formula in this example states if the record in the PSUB file is a sales
order, then multiply the quantity by the unit cost; otherwise, multiply the quantity by the
unit sell price. Because purchase orders do not have a unit cost, you can use this
dictionary item for both purchase orders and sales orders.

We divide each of these values by 1000000 to place the decimal point in the correct
position. Eclipse stores the unit price and cost out to nine characters, as shown in the
following listing of raw data.

Example 4

The I-Descriptor formula in this example states that if the A/R record is a sales order, use
a subroutine that calculates the outgoing freight; otherwise, use the incoming freight. The
conditional statement enables you to use this dictionary item for both purchase orders and
sales orders.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 175

Exercise 14.1
1. From the ENTITY file, create a dictionary item that will return a TOTAL.CURRENT

balance. It should include the Future A/R bucket, Current A/R bucket, and Deposits.

Exercise 14.2
1. From the PRODUCT file, create a dictionary item that displays the price line if the

product is a stock product and the buy line if the product is a nonstock product.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 176

Exercise 13.3
1. Write a report from the PRODUCT file that shows the product’s inventory value at

Replacement Cost and also Average Cost. Show the difference between the two costs
on the report.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 177

STR Function

The STR function repeats a character string as many times as you want. You can use this
function to create separators in reports. The data within the quotation marks is the string
of characters that will print to the screen. This is followed by the number of times you
want this string to appear.

The following example prints happy faces for everyone!

Use the Test hot key to view the results produced by an I-Descriptor formula.

The following I-Descriptor is typically used to insert lines on a report for data entry.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 178

TRIM Function

The TRIM function removes spaces between elements in a string so that only one logical
space separates each string element. For example, TRIM(DESC) removes unnecessary
spaces in a product’s description.

This enables you to isolate second and third words from a string of characters in which
there may have been a more than one space in between the words.

The following example retrieves the second word of the description from the PRODUCT
file while reporting from the PSUB file. Using the TRIM function guarantees that the
second word is returned.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 179

Concatenation

Concatenation occurs when you combine two elements of a string together. A colon “:”or
“CAT” represents concatenation. As discussed during lesson 7, concatenation can also be
applied to I-Descriptors as well as mass loading data. Sometimes creating a dictionary
item that concatenates different values can create a “key” to a new file.

Example 1

The following I-Descriptor concatenates the values of two dictionary items and inserts a
period between them.

Example 2

In the next example, the formula concatenates the Entity ID from the AR file first with a
space and then with the actual Customer’s name.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 180

Example 3

The dictionary item in this example is commonly used to gain access to the AR file. The
AR file’s @ID or key to each record includes the order number and the generation. The
PSUB file stores this information in the @ID; however, each element in the PSUB @ID
is separated by a tilde (~) and the leading zeros have been stripped from the generation
number.

The dictionary item concatenates the order number, a period, and the generation number
to create a key to the AR file. This dictionary item also adds the leading zeros to the
generation number.

The R%3 forces a number of 1 to read 001. The “R” in R%3 indicates right justification,
the “3” indicates the number of positions, and the “%” fills in with zeros.

Example 4

The following dictionary item retrieves the first line of the address, makes sure that the
second field starts in the same position each time, concatenates an “F” and a space, and
then concatenates the fax number.

The text within the quotation marks is a literal. Whatever is between the quotation marks
is what displays. In this example, the literal is an “F” and a space. The “L#30” forces the
address line to be left justified and the space allocated for it to be 30 characters long, even
if the address contains less than 30 characters. This guarantees that the Fax number will
always start at character position 31.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 181

OCONV Function

The OCONV function converts an attribute according to a specified conversion code and
returns the converted output. For example:

OCONV(@RECORD<16>,“MCU”)

The value of @RECORD<16> is converted to uppercase (MCU is the UniVerse code for
“Mask Character Uppercase”). Refer to Lesson 4 for different conversion codes. You can
also refer to Jonathan E. Sisk’s Basic Programming Guide, which can be obtained from
http://www.jes.com/pb/.

The Eclipse search programs differentiate between upper and lower case characters. Use
OCONV to change all characters to one case prior to using the search engine.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 182

DCOUNT Function

I bet that we can agree not all of the product descriptions have the same number of words
for you to be able to obtain the last word for every product.

The following dictionary counts the number of words in the product description. It
recognizes a space as the delimiter between words. Once it retrieves the count, we can
then determine where the last word exists in the description.

The FIELD statement in the next expression uses the count from the first expression to
extract the last word of the description. Even though each product description can be
different, this dictionary always retrieves the last word.

This model can also be used if you wanted to extract the last value in a multi valued
string of data. By converting the value markers to spaces you can then count the spaces
to come up with the last value assigned to a data element.

Exercise 14.4
1. Create a dictionary item in the PRODUCT file that displays the following information

in a blocked format:
• Keywords
• Description
• Weight
• Price Line
• Buy Line

Hint: Use the NA dictionary item from the ENTITY file as a template.

Exercise 14.5
1. Create a dictionary item in the ENTITY file for the last word in the Name.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 183

Lesson 15
Using Subroutines

Objectives
After you complete this lesson, you will be able to:

• Learn about the capabilities of Subroutines in Eclipse
• Create a dictionary using a subroutine

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 184

Subroutines

Subroutines have been created by Eclipse programmers to be used in dictionaries. There are
times that the data needed can only be extracted using a subroutine because the system needs to
do more work than a simple trans or field command.

You may have encountered dictionary items using a subroutine. The arguments needed to be
passed into the subroutine may be different for each subroutine. This lesson will discuss what is
needed to use a subroutine on a dictionary item and how to recognize the requirements.

To view a subroutine you will need to access the Program editor program located from your
system programming menu.

The system will want to know the file name for which the program is stored. There are:

SP System Programs
BP Basic Programs (90 % of our code)
FBP Field (or Fixed) Basic Programs
UBP User Specific (Custom) Basic Programs
CBP Client Modified Basic Programs

The filename for which these subroutines are stored is in the BP – Basic Program file.

The Edit Program prompt is where you want to key in the subroutine that is of interest to you.
In the above figure we will be viewing the subroutine called DICT.GET.LEDGER.VALUE.

Once you hit <enter> after typing in your subroutine the system will automatically position your
cursor in the “Option to Perform” box. The system will default to the letter “E” which represents
Edit mode. We do not want to view our program in edit mode.

Option to Perform

In this field, select the option you want to run the edit for the selected program. The
options are all listed and described below.

• C - Compile this program (edit program) using the Eclipse pre-compiler.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 185

• C* - Compile this program without using the Eclipse pre-compiler. This option will
put your code straight into the BASIC compiler and should not be used very often.
You will never use this option in this manual, however we will discuss areas of our
code that differ from true PICK code.

• CD – Compile this program with debug window inputs.

• CF – Compile a list of programs (your active list). This option can be done after you
do a “Find” from the program editor to compile all of the programs you found in that
list.

• CT – Compile test(s) on the edit program. This option will perform a test compilation
before activating the new code. It is very important when you compile high profile
routines in develop or routines on a site. When a compile blows up, that code cannot
be accessed until you complete a successful compile on that routine.

• D – Delete the edit program from the file you specified in File Name. This option will
save a copy of the routine in the DP file.

• DS – Send a grid layout of the screen to the printer.

• DB – Database allows you to enter a UniVerse BASIC command and get help from
the on-line UniVerse help documents.

• DU – DU let’s you put in a Unix command and get help from the on-line AIX/UNIX
manual on that command.

• E – Edit the “edit program” with the Eclipse program editor.

• ED – Edit the “edit program” with the UniVerse line editor (not recommended for use
at Eclipse).

• EF – Use the Eclipse program editor to edit all of the programs in your active find
list.

• P – Print the edit program to the active printer.

• R – Run the edit program from this editor.

• S – Invoke the Eclipse screen editor to create or edit a screen with the same name as
the edit program.

• T – Drop down to Eclipse TCL (True Command Language).

• V – View the edit program in view only mode (no changes can be made).

• EV – Edit the “edit program” using the new GUI program editor.

Again the option we want to choose is V to view the program.

This class does not teach how to create a subroutine. Let’s dissect the following subroutine
together.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 186

DICT.GET.LEDGER.VALUE

 SUBROUTINE (VAL,ATTB)

 GN = DCOUNT(@ID,'.')
 IF NUM(FIELD(@ID,'.',GN)) OR GN <= 1 THEN NULL ELSE VAL='';RETURN

 BEGIN CASE
 CASE ATTB[1,3] = "ID."
 POS = FIELD(ATTB,'.',2)
 VAL = FIELD(@ID,'.',POS+2)
 RETURN
 CASE INDEX(@ID,'~',1)
 OID = FIELD(@ID,'~',4)
 IDX = FIELD(@ID,'~',5)
 READV GEN.IDX FROM LEDFILE,OID,8 ELSE GEN.IDX = ''
 CASE GN=4
 OID = FIELD(@ID,'.',3)
 IDX = FIELD(@ID,'.',4)+0
 READV GEN.IDX FROM LEDFILE,OID,12 ELSE GEN.IDX = ''
 CASE GN = 2
 OID = FIELD(@ID,'.',1)
 IDX = FIELD(@ID,'.',2)+0
 READV GEN.IDX FROM LEDFILE,OID,8 ELSE GEN.IDX = ''
 CASE OTHERWISE
 OID = FIELD(@ID,'.',1)
 IDX = FIELD(@ID,'.',3)+0
 READV GEN.IDX FROM LEDFILE,OID,12 ELSE GEN.IDX = ''
 END CASE

 LOCATE IDX IN GEN.IDX<1> SETTING GEN ELSE VAL=''; RETURN

 OE.GET.QSIGN QSIGN,OID
 BEGIN CASE
 CASE NUM(ATTB)
 LOCATE IDX IN GEN.IDX<1> SETTING GEN THEN
 READV VALS FROM LEDFILE,OID,ATTB ELSE VALS = ''
 VAL = VALS<1,GEN>
 END ELSE
 VAL = ''
 END
 IF ATTB>13 AND ATTB<19 THEN
 VAL = VAL*QSIGN
 END
 CASE ATTB[1,3] = 'LI.'

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 187

 TYPE = ATTB[4,99]
 VAL = ''
 MATREAD LED FROM LEDFILE,OID ELSE MAT LED = ''
 LDIDS = LED(48)<1,GEN>
 LD.CT = DCOUNT(LDIDS,SVM)
 FOR LDN = 1 TO LD.CT
 LDID = LDIDS<1,1,LDN>
 LD.GET LDID
 PN = LD(1)
 BEGIN CASE
 CASE NUM(FIELD(TYPE,',',1))
 MATBUILD WRK FROM LD
 VAL<1,LDN> = WRK<TYPE>
 CASE TYPE = 'PN'
 IF NUM(PN) THEN
 VAL<1,LDN> = PN
 END ELSE VAL<1,LDN> = ''
 CASE TYPE[1,4] = 'SQTY'
 BEGIN CASE
 CASE NUM(PN)
 SP.QTY = (SUM(LD(5)<1,GEN>) + SUM(LD(6)<1,GEN>))*QSIGN
 IF TYPE = 'SQTY.PER' THEN
 *** convert the UOM qty.
 MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD = ''
 IF PRD(15) # '' THEN
 UMTBL = PRD(15)
 END ELSE
 READV UMTBL FROM PLNEFILE,PRD(9),3 ELSE UMTBL = ''
 END
 IQ.TO.ALPHA UMTBL,PRD(7),LD(23),SP.QTY,,,,,ALPHA
 SP.QTY = TRIM(ALPHA)
 END
 VAL<1,LDN> = SP.QTY
 CASE OTHERWISE
 VAL<1,LDN> = '*'
 END CASE
 CASE TYPE[1,4] = 'OQTY'
 BEGIN CASE
 CASE NUM(PN)
 ORD.QTY = LD(4)*QSIGN
 IF TYPE = 'OQTY.PER' THEN
 *** convert the UOM qty.
 MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD = ''
 IF PRD(15) # '' THEN
 UMTBL = PRD(15)
 END ELSE
 READV UMTBL FROM PLNEFILE,PRD(9),3 ELSE UMTBL = ''

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 188

 END
 IQ.TO.ALPHA UMTBL,PRD(7),LD(23),ORD.QTY,,,,,ALPHA
 ORD.QTY = TRIM(ALPHA)
 END
 VAL<1,LDN> = ORD.QTY
 CASE OTHERWISE
 VAL<1,LDN> = '*'
 END CASE
 CASE TYPE = 'CT'
 BEGIN CASE
 CASE NUM(PN)
 VAL<1,LDN> = 1
 CASE OTHERWISE
 VAL<1,LDN> = 0
 END CASE
 CASE TYPE[1,4] = 'DESC'
 IF NUM(PN) THEN
 READV DESC FROM PRDFILE,PN,1 ELSE DESC = '* Not Found *'
 END ELSE DESC = ''
 IF LD(3)#'' THEN DESC<1,-1> = LD(3)
 SVCHK = TYPE[5,99]
 IF TRIM(SVCHK) = '' OR NOT(NUM(SVCHK)) THEN
 VAL<1,LDN> = LOWER(DESC)
 END ELSE
 VAL<1,LDN> = DESC<1,SVCHK>
 END
 CASE TYPE[1,4] = 'ENT#'
 IF NUM(PN) THEN
 FOUND = NO
 CMT.CT = DCOUNT(LD(3)<1>,VM)
 FOR JT = 1 TO CMT.CT
 IF OCONV(LD(3)<1,JT>,'MCU')[1,6] = 'YOUR #' THEN
 VAL<1,LDN> = TRIM(FIELD(LD(3)<1,JT>,'#',2))
 FOUND = YES
 EXIT
 END
 NEXT JT
 IF NOT(FOUND) THEN
 OE.CUS.PN.CMT.GET LED(1)<1,GEN>,LED(5)<1,GEN>,,PN,CMT
 VAL<1,LDN> = CMT<1,1,1>
 END
 END
 CASE TYPE = 'PRCLN'
 IF NUM(PN) THEN
 READV PRCLN FROM PRDFILE,PN,9 ELSE PRCLN = '* Not Found *'
 END ELSE PRCLN = ''
 VAL<1,LDN> = PRCLN

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 189

 CASE TYPE = 'PRCEXT'
 SQTY = (SUM(LD(5)<1,GEN>)+SUM(LD(6)<1,GEN>))*QSIGN
 VAL<1,LDN> = ICONV(OCONV(LD(8)<1,GEN>,'MR9')*SQTY,'MR2')
 CASE TYPE = 'UNIT'
 VAL<1,LDN> = ICONV(OCONV(LD(8)<1,GEN>,'MR9'),'MR3')
 CASE TYPE = 'CSTEXT'
 SQTY = (SUM(LD(5)<1,GEN>)+SUM(LD(6)<1,GEN>))*QSIGN
 VAL<1,LDN> = ICONV(OCONV(LD(10)<1,GEN>,'MR9')*SQTY,'MR2')
 CASE TYPE = 'COMEXT'
 SQTY = (SUM(LD(5)<1,GEN>)+SUM(LD(6)<1,GEN>))*QSIGN
 VAL<1,LDN> = ICONV(OCONV(LD(27)<1,GEN>,'MR9')*SQTY,'MR2')
 CASE TYPE = 'TYPE'
 VAL<1,LDN> = FIELD(LD(7)<1,GEN>,'~',1)
 CASE TYPE = 'TAG' OR TYPE = 'TAGDT'
 LOCA = FIELD(LD(7)<1,GEN>,'~',2)
 TAG = FIELD(LOCA,'^',2)
 TAG = FIELD(TAG,".",1)
 LOCATE TAG IN VAL<1> BY "AL" SETTING TLOC ELSE
 VAL = INSERT(VAL,1,TLOC;TAG)
 END
 CASE TYPE[1,6] = 'ONHAND'
 STK.BR = LED(2)<1,GEN,2>
 IF NUM(PN) THEN
 PRDD.BR.GET.REC STK.BR,PN,REC
 GET.ONHAND REC<1>,REC<8>,STK.OH
 IF TYPE = 'ONHAND.PER' THEN
 *** convert the UOM qty.
 MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD = ''
 MATREAD PLNE FROM PLNEFILE,PRD(9) ELSE MAT PLNE = ''
 DFLT.PER.GET 'I',PER,ALPHA
 IF PRD(15) # '' THEN
 UMTBL = PRD(15)
 END ELSE
 UMTBL = PLNE(3)
 END
 IQ.TO.ALPHA UMTBL,PRD(7),ALPHA,STK.OH,,,,,ALPHA
 STK.OH = TRIM(ALPHA)
 END
 END ELSE
 STK.OH = 0
 END
 VAL<1,LDN> = STK.OH
 CASE TYPE = 'PN.STK.FLAG' ;* stock flag
 *** for stock branch only
 STK.BR = LED(2)<1,GEN,2>
 STK.FLAG = ''
 IF NUM(PN) THEN

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 190

 GET.PRD.BR.VAL STK.BR,PN,12,STK.FLAG
 IF STK.FLAG ='1' THEN STK.FLAG ='Y' ELSE
 IF STK.FLAG='0' THEN STK.FLAG='N' ELSE STK.FLAG='-'
 END
 END
 VAL<1,LDN> = STK.FLAG
 CASE TYPE = 'PN.BUY.ID' ;* buyer's ID
 *** for stock branch only
 STK.BR = LED(2)<1,GEN,2>
 BUY.ID = ''
 IF NUM(PN) THEN
 READV BLINE FROM PRDFILE,PN,12 THEN
 BUYLINE.BR.GET.VAL STK.BR,BLINE,17,BUY.ID
 END
 END
 VAL<1,LDN> = BUY.ID
 CASE TYPE[1,4] = 'ONPO'
 IF NUM(PN) THEN
 *** for stock branch only
 STK.BR = LED(2)<1,GEN,2>
 IF TYPE = 'ONPO.DT' THEN ;* ONPO
 *** for TYPE = 'ONPO.DT'
 ONPO.DT = 99999
 END ELSE
 *** for TYPE = 'ONPO' or 'ONPO.PER'
 MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD = ''
 MATREAD PLNE FROM PLNEFILE,PRD(9) ELSE MAT PLNE = ''
 ONPO = 0
 END
 PRDD.BR.GET STK.BR,PN
 TRS = PRDD.BR(2)
 TRN = DCOUNT(TRS,VM)
 FOR TRX=1 TO TRN
 IF FIELD(TRS<1,TRX>,'~',3)[1,1]='P' THEN
 IF TYPE = 'ONPO.DT' THEN
 *** get the receiving date
 PO.DT = FIELD(TRS<1,TRX>,'~',2)
 *** set ONPO.DT to the latest date
 IF ONPO.DT > PO.DT THEN ONPO.DT = PO.DT
 END ELSE
 *** get the QTY
 ONPO += PRDD.BR(3)<1,TRX>
 END
 END
 NEXT TRX
 IF TYPE = 'ONPO.DT' THEN
 IF ONPO.DT = 99999 THEN ONPO.DT = ''

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 191

 VAL<1,LDN> = ONPO.DT
 END ELSE
 IF TYPE = 'ONPO.PER' THEN
 *** convert the UOM qty.
 DFLT.PER.GET 'P',PER,ALPHA
 IF PRD(15) # '' THEN
 UMTBL = PRD(15)
 END ELSE
 UMTBL = PLNE(3)
 END
 IQ.TO.ALPHA UMTBL,PRD(7),ALPHA,ONPO,,,,,ALPHA
 ONPO = TRIM(ALPHA)
 END
 VAL<1,LDN> = ONPO
 END
 END ELSE
 VAL<1,LDN> = ''
 END
 CASE TYPE[1,7] = 'ON.XFER' ;* on transter
 *** for stock branch only
 STK.BR = LED(2)<1,GEN,2>
 ONPO = 0
 IF NUM(PN) THEN
 INV.GET.TOTALS
PN,STK.BR,STK.OH,TAG.OH,STK.CMTD,TAG.CMTD,STK.PO,TAG.PO,STK.XFER,TAG.
XFER,OTHER,ON.BID,STK.INPR,TAG.INPR
 ONPO += STK.XFER
 END
 IF TYPE = 'ON.XFER.PER' THEN
 *** convert the UOM qty.
 MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD = ''
 MATREAD PLNE FROM PLNEFILE,PRD(9) ELSE MAT PLNE = ''
 DFLT.PER.GET 'T',PER,ALPHA
 IF PRD(15) # '' THEN
 UMTBL = PRD(15)
 END ELSE
 UMTBL = PLNE(3)
 END
 IQ.TO.ALPHA UMTBL,PRD(7),ALPHA,ONPO,,,,,ALPHA
 ONPO = TRIM(ALPHA)
 END
 VAL<1,LDN> = ONPO
 END CASE

 NEXT LDN

 IF TYPE = 'TAGDT' THEN

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 192

 TAG.CT = DCOUNT(VAL,VM)
 FOR TAG.ID = 1 TO TAG.CT
 TAG = VAL<1,TAG.ID>
 READV SHIP.DT FROM LEDFILE,TAG,9 ELSE SHIP.DT=''
 SHIP.DT = SHIP.DT<1,1>
 VAL<1,TAG.ID> = SHIP.DT
 NEXT TAG.ID
 END
 CASE ATTB[1,3]='TV.'
 TYPE=ATTB[4,99]
 BEGIN CASE
 CASE TYPE = 'PN'
 IF NUM(PN) THEN
 VAL<1,LDN> = PN
 END ELSE VAL<1,LDN> = ''
 CASE TYPE = 'NAME'
 READV CN FROM LEDFILE,OID,5 ELSE CN=''
 CN = CN<1,GEN>
 READV VAL FROM CUSFILE,CN,1 ELSE VAL=''
 CASE TYPE = 'BFLW.DT'
 VAL=''
 READ REC FROM LEDLFILE,OID ELSE REC=''
 DTS=DCOUNT(REC<11>,VM)
 FOR DTCT = 1 TO DTS
 IF REC<11,DTCT> GT 0 THEN
 VAL<1,-1>=REC<11,DTCT>
 END
 NEXT DTCT
 END CASE
 END CASE
 RETURN

DICT.GET.LEDGER.VALUE
SUBROUTINE (VAL,ATTB)
This dictionary works from the PSUB, LEDGER, AR or the ORDER.QUEUE file. Specify the
attribute number from the LEDGER file that you want to pass back. The attribute can also be a
code to pull back different information.

• LI.PN will pull back the Line Item Part number.
• LI.SQTY will pull back the line item ship quantity
• LI.SQTY.PER will pull back the uom for the ship quantity.
• LI.OQTY pulls back the line item open quantity
• LI.OQTY.PER pulls back the uom for the open quantity.
• LI.DESC pulls back the description of the line item.
• LI.ENT# pulls back the customer part number (if customers are assigned part numbers in

the customer/vendor part number screen)
• LI.PRCLN pulls back the price line for the item on the order.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 193

• LI.PRCEXT pulls back the extended price for the item on the order
• LI.UNIT pulls back the unit price for the item on the order
• LI.CSTEXT pulls back the extended cost of the item
• LI.COMEXT pulls back the unit cost of the item
• LI.TYPE pulls back the sales quantity type such as tag, defective, etc.
• LI.ONHAND pulls back the product’s on-hand quantity.
• LI.ONHAND.PER will display the unit of measure for the on-hand quantity.
• LI.PN.STK.FLAG displays the branches stk flag from the Primary inventory

maintenance screen. (- = “”; 1 = Y ; 0 = N)
• LI.PN.BUY.ID displays the user id of the buyer for the items on the transaction
• LI.ONPO displays quantity on a purchase order for the line item..
• LI.ONPO.DT displays the expected receiving date of the purchase order
• LI.ONPO.PER displays the unit of measure for the quantity on order from the po.
• LI.ON.XFER displays the quantity on a transfer.
• LI.ON.XFER.PER displays the unit of measure for the quantity on transfer
• LI.TAGDT displays the date the tagged purchase order or transfer is expected to be

received in.
• TV.NAME pulls back the full name of the writer of the transaction
• TV.BFLW.DT pulls back the bid follow-up date for the transaction.

Exercise:

Create a dictionary item using the DICT.GET.LEDGER.VALUE subroutine with the
knowledge you just learned.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 194

Subroutine Dictionary Examples

The following are some sampling of dictionary items that you will not have in your
eclipse application. Let’s review the dictionaries and the subroutines being used together.

The above dictionary will display the order quantity on each open order that displays for a
product. This dictionary will simply list the open order quantity amounts for each order. This
dictionary will not do math with other columns on a report writer report because it is a vertical
listing of quantities not a sum of all of the quantities. Please see next dictionary item.

The above dictionary item adds all of the open order quantities and provides a summary total.
This dictionary can then be used to do math on other columns on a report writer.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 195

The above dictionary item will display open purchase orders for the PN associated with the
Customer Specific/Vendor Specific part number screen.

The above dictionary is used on the ENTITY.PN.IDS file which is where your customer/vendor
part numbers are stored. This subroutine will allow you to pass in the eclipse product id and the
customer id so that you can return a sales$ amount for the customer and product from this file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 196

DICT.BR.VAL.GET
SUBROUTINE (VAL,BR,PN,ATTB.NO,SVM.NO,LOC.FLAG)
Subroutine: DICT.BR.VAL.GET

 This routine pulls branch specific data from the PROD.BR file or the PROD.CALC.BR file
calling either PRD.BR.GET.VAL or PRDC.BR.GET.VAL to get a specific attribute for a
branch. If no branch is specified then all branches are used.

 BR - Branch [IN]
 PN - Part Number [IN]
 ATTB.NO - Attribute Position [IN]
 SVM.NO - Sub-Value Mark [IN]
 LOC.FLAG - Flag to set whether to pull from PROD.CALC or PROD.BR [IN]
 VAL - Value Returned [OUT]

DICT.CALC.CN.SLS
 This subroutine requires 6 arguments to be entered for it to work.
 SUBROUTINE (AMT,RANGE,AVN,BRCHS,SD,ED,CN)
 ** Version# 2 - 05/24/1996 - 02:55pm - STEELI - develop
 *---------Date Ranges
 * 1 = User Defined Date Range
 * 2 = MTD Date Range
 * 3 = YTD Date Range
 * 4 = Fiscal MTD Date Range
 * 5 = Fiscal YTD Date Range

 *---------AVN Definition
 * 1 = Sales
 * 2 = Gross Profit

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 197

DICT.AR.LEDL.INFO
This subroutine is used from the AR file. The two requirements when using this
subroutine in an I-descriptor is to pass in the @ID and the word the system needs to find
in the change log for the transaction.

The system will return the user, date, time, port and change log as shown below.
S0704030.001
DAVIDB 03/21/00 02:51pm /pts/4 DAVIDB Authorized : Overcommitted

An example of an I-Descriptor using this subroutine is:

File Name : AR
 Dict ID : LEDL.OVER

SUBR('DICT.AR.LEDL.INFO',@ID,'Overcommit')

DICT.PRD.AVG.PRC
 SUBROUTINE (AVG.PRC)
*** SUBROUTINE - DICT.PRD.AVR.PRC
*---
*** This routine calculates the Average Selling Price for the Product whose PN is @ID based on
the Branches, Start Date and End Date specified through SET.COMMON at TCL.
*---
*** AVG.PRC (OUT) - The Average Selling Prices (VM by Branch)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 198

DICT.PRD.CUS.ORDERS
 SUBROUTINE (ORDATA,VAL,PN,CN)
 **
 * VAL = 1 ; Open Order ID's *
 * VAL = 2 ; Required Date *
 * VAL = 3 ; Qty pending shipment *
 * VAL = 4 ; First line of product desc *
 * VAL = 5 ; Ship Date *
 **
If you can pass in the @Id of the product file and the @id of the customer, you can return any of
the above value numbers.

DICT.PRD.GET.INFO
SUBROUTINE (VAL,OPT,TYPE)
Works from the PRODUCT file.
The options you can choose are:
LP = Line Point
OP = Order Point
XFER.PT = Transfer Point
DMD = Demand
The different types can be:
WBRS = Warehouse branch
PBRS = Purchasing Branch

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 199

DICT.PSUB.LEDL.INFO
SUBROUTINE (VAL,PSUB.ID,WORD)
This routine will go out to the Ledger log and pull back occurrences you specify. You must
enter the word to search on.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 200

Appendix A
Answers to I-Descriptor Exercises

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 201

Lesson 12

Exercise 12.1

Exercise 12.2

Lesson 13

Exercise 13.1

The above answer could be any of the expressions shown above.

Exercise 13.2

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 202

Exercise 13.3

Exercise 13.4

Exercise 13.5

OR it could have been:

Lesson 14

Exercise 14.1

Exercise 14.2

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 203

Exercise 14.3

Exercise 14.4

This answer could be anything you want. Your carriage returns could be anywhere.

Exercise 14.5

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 204

Appendix B
File Layouts for Release 7

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 205

Entity File Layout

Field # Field Name: Just/Width Field Description

1 NAME L#35 Entity Name
2 ADDRESS L#35 Entity Address (Multi Valued)
3 CITY L#20 City
4 STATE L#5 State
5 ZIP R#11 Zip Code
6 COUNTRY L#10 Country
7 ENTITY.TYPE L#1 Entity Type MV by position
8 SORTBY L#11 Sorts entity file
9 INDEX L#35 Index

10 BILL.TO R#6 For "Job/Ship-to" entity (Customer)
11 PAY.TO L#6 Pay To (for ship-froms) (Vendor)
12 SHIP.FROMS R#6 List of Ship-Froms for "Pay-To" entity (Vendor)
13 CLASS L#4 Customer Class
14 SHIP.TOS R#5 List of Ship-Tos For "Bill-To" entity (Customer)
15 EDI.IDS L#25 EDI Information
16 CONTACTS L#30 Contacts for this Entity
17 PHONES L#17 6 Phone numbers - align w/contacts
18 OE.MESSAGE L#10 Order Entry Message
19 OE.TRIGGERS L#10 User Defined Order Entry Triggers
21 VALID.WIP.IDS L#16 Work In Process (Processes)
22 CR.LIMIT R#14 Customer credit limit
22 PAST.DUE.DAYS L#14 PAST.DUE.DAYS
23 CREDIT R#9 Credit Specifications
24 AUTH.BRCHS L#3 Branches Cus/Vendor has access to
26 OVERRIDE.TERMS R#1 Ovrd Inv Terms Code for Svc Chg
27 AUTH.REQD R#1 Authorized personnel only (1=Y)
28 CUST.TERMS L#12 Customer Payment Terms
29 AUTH.NAMES L#25 Auth names to place sales orders
30 AMT.ALLOWED R#12 Max order amt for auth personnel
31 COD.PAY L#1 Accept Checks? (Company/Personal)
32 TAX.EXP.GRPS L#10 Tax Exception Groups
33 TAX.STATE.CODE L#2 Stores Customer State Tax Code
34 TAX.EXP# L#20 Tax Exempt Number (Line up with state)
35 TYPE L#12 Customer Pricing Type / Vendor Type
36 TAX.JUR.OVRD L#10 Tax Jurisdiction Override
37 APPLY.CR R#1 Apply credits to oldest buckets (Y=1)
38 USE.DFLT.BT.CR R#1 1=Use Dflt 2=Use Bill-to (Credit information)
39 FGHT.IN.EXEMPT L#1 Entity is Exempt from incoming freight charges
39 FGHT.OUT.EXEMPT L#1 Customer is Exempt from outgoing freight charges
40 SEP.AR.FR.BT L#12 Separate AR from Bill-To
41 SALESMAN L#20 Salesperson Name (Outside)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 206

42 PRICE.STYLE L#10 Pricing Print Style for Sales Orders
43 BO.ACTION.CUS L#1 Backorder Status (C,H,A,L,X)
44 SALESMAN.IN L#10 Salesperson Name (Inside)
45 PO#.REQ L#1 PO# or Job Name req'd? - P,R,B=both
46 SHIP.VIA L#25 Default Ship Via code; See SHIP-VIA
47 CREDIT.STATS R#10 # Payment Days, Hi AR, Avg AR - multi-valued
48 START.DATE R#10 Start Date (Create Date)
49 USER.DEFINED L#10 User Defined
50 INV.COPY.CNT R#5 # of Invoice copies
51 SEL.CODE L#20 Customer Pricing Selection Code
52 SHIP.INST.DFLT L#38 Default Shipping Instructions
53 HOME.BR R#5 Home Branch
54 HOME.TERR L#10 Home Territory
55 EXP.DIST.CODE L#10 Expense Distribution Codes
56 EXP.ACCT# L#10 Expense Account#
57 EXP.PERC R#5 Expense Distribution Percentages
58 VEN.TERMS L#20 A/P Terms (Vendor)
59 FRT.ALLOWED L#2 Vendor Frt Allowed (Y/N)
60 OVR.SHORT% R#12 Maximum% for A/P shipment
61 OVR.SHORT$ R#12 Maximum$ amt for A/P shipment
62 BO.ACTION.VEN L#10 Vendor Backorder
63 STMT.TYPE L#1 alance Fwd/<O>pen Item Statement
64 STMT L#1 Print Batch Statement Y/N
65 DELETE.FLAG L#1 Delete Flag
66 ALT.CUST L#8 Alternate Customer/Vendor (entity-specific) Part #
67 REBATE.DATA L#10 Rebate Product IDs and Price Line
68 REMOTE.DATA L#10 Remote OE Data
70 PRC.LINES L#10 Price Lines
71 INIT.STAT.OVRD L#1 Initial Status Override
72 SLS.SRC.OVRD L#10 Sales Source Override
73 SHIP.BR.OVRD R#3 Shipping Branch Override
74 PRT.KIT.COMPS L#1 Print Kit Components? (Y/N)
75 REQ.LT R#3 Req'd Date Leadtime
76 MAX.EARLY.SHIP R#3 Maximum Early Ship Days
77 SIC.CODE L#10 SIC Code
78 CUS.SEL.CODE L#35 User Defined Customer Select Code
79 AUTO.DOC.ID L#30 Auto Document Printing ID
80 PARENT.ID R#9 Parent Statement Customer ID
81 RANK L#1 Customer Ranks
82 PNT.DATA L#20 Points Data
83 SINGLE.INV.FLAG R#1 Single Invoice Flag (Y=1)
84 MAX.COLLECT.DAYS R#5 Maximum Collection Days
85 CONTRACT.PRC.IDS L#10 Contract Pricing IDs
86 UET.DATA L#10 UET Data
87 NORMAL.DEL.TIME R#7 Normal Time
88 D&B# L#20 D&B#
89 CERTIFICATION.DATE L#30 Certification Information
90 CURR.TYPE L#9 Primary Currency Type (Blank=System default)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 207

91 ALT.BT.NAME L#15 Alternate Bill-To Name
92 ALT.BT.ADDR L#20 Alternate Bill-to Address
93 ALT.BT.CITY L#11 Alternate Bill-To City
94 ALT.BT.ST L#3 Alternate Bill-To State
95 ALT.BT.ZIP L#10 Alternate Bill-To Zip code
96 ALT.BT.SORT L#12 Alternate Bill-To Sortby
97 ALT.BT.USE.ST R#2 Alternate Bill-To - Use Ship-To Flag
99 WOE.FORMS L#25 WOE Custom Forms
100 UBAP.OVRD L#9 UBAP Ovrd GL # (Vendor Add'l screen)
101 CREDIT.CARD L#30 Credit Card Default Info (Customer)
102 1099.ID L#15 1099 Tax ID (Vendor)
102 VALID.POS L#15 Valid PO List (Customer)
103 FRGHT.DAYS R#3 Freight Days (Vendor)
104 SUBS L#3 Restrict Substitutes? (Customer)
105 TAX.EXEMPT.CODES L#16 Tax Exempt Codes (Line up W/ exempt #'s)
106 LINE.ITEM.TAX L#1 Line Item Tax (""=Disabled; 1=Always prompt; 2=Not)
107 ACL.USERS L#8 Access Control List - Users
108 ACL.VONLY L#1 Access Control List - View Only
109 QUAL.LVL L#2 Acceptable Quality Controls

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 208

Product Dynam File Layout

 Field # Field Name Just/Width Field Description

1 ONHAND R#10 On Hand

2 ID L#40
ddddd~i~nnnnnnnn : ddddd=date; i=<D; (sales & purch
transactions)

3 STOCK.QTY R#10 STOCK.QTY (related to field 2)
4 REVIEW.QTY R#10 REVIEW.QTY (related to field 2)

5 BID.ID L#25
ddddd~i~nnnnnnnn : ddddd=date; i=<Doc initial>;
nnnnnnnn=LDI

6 BID.QTY R#10 BID.QTY
7 UPD.GEN R# Generation# of this record. Must be incremented every time r
8 LOCATION L#10 Bin & Aisle Location for stock qty in Attb#1 (VM) by Brch
9 CTRL.TYPE L#1 Loc Ctrl Type
10 LANDED.COST R#12 Landed Last Cost
11 AVG.COST R#10 Average Cost
12 LAST.COST R#10 Last Cost received
13 LOC.STAT L#1 Location Status
14 AVAIL.CACHE.ID L#10 AVAIL CACHE ID
15 AVAIL.CACHE.QTY R#6 AVAIL CACHE QTY
16 LOC.MIN R#6 Location Min Qty
17 LOC.MAX R#6 Location Max Qty
18 LOC.LAST.CNT R#8 Last Count
19 LOC.SORTBY L#8 Location Sortby
20 AVG.LANDED.COST L#15 AVG.LANDED.COST
20 LOC.PICK.PRI R#2 Pick Priority
21 SER.NUMS L#20 SER.NUMS
22 SER.QTYS R#8 Open Serial Qtys
23 SER.LOCS L#20 Serial Number Locations
24 FRZ.AVG.COST R#12 FRZ.AVG.COST
25 FRZ.LAST.COST R#12 FRZ.LAST.COST
26 FRZ.DATE R#10 FRZ.DATE
27 LOC.PICK.STATUS L#15 LOC.PICK.STATUS
28 LOC.PICK.LOCN L#12 LOC.PICK.LOCN
29 PREPACK.QTYS R#12 Pre-Package Qty (By Br By Locations)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 209

Product File Layout

Field # Field Name Just/WidthField Description

1 DESC L#35 Description
2 GL.TYPE L#8 General Ledger Product Type
3 STATUS R#6 Product Status ; 1=stock, 2=non-stock
4 KEYWORDS L#20 Keywords
5 PRICE.AS L#10 Product ID of Master Price Item
6 SHEET L#4 Branch Price Sheet ID
7 UOM.QTY L#7 Unit of Measure Quantity
8 INDEX.TYPE L#1 Index Type: P = Primary; C = Catalog
9 LINE L#8 Price Line
10 UNIT.WEIGHT R#10 Unit Weight (lbs or kgs) (MR4)
11 FORECAST.PARAMS L#15 Product Level Forecast parameters (Min Hits...)
12 BUY.LINE L#8 BUY.LINE
13 LOAD.FACTOR R#10 Load Factor (MR4)
14 COMM.CODE L#20 Commodity Code
15 PN.UMS L#15 Product Level Unit of Measures.
16 DFLT.UMS L#8 Default Units of Measure
17 BLANK2 L#6 Not Yet Used
18 PROCURE.GRP L#10 Procurement Group
19 SELECT.CODE L#25 Product Select Code
20 SORT.CODE R#9 Sort Code
21 RANK L#12 Product Rank
22 TAX.EX L#10 Name of Product Exception Groups -- Hot Key X

23 TAX.EX.CODE L#2
Tax Exception Code: 1=reduced; 2=always full;
3=always reduced

25 MIN.SELL.QTY R#3 Sell Package Quantity - selling multiple
26 CREATE.DATA L#15 Product Creation Info such as Date; User etc
27 MIN R#6 Minimum (Non Forecasted)
28 MAX R#6 Maximum (Non Forecasted)
29 LAST.DEMAND.CALC R#10 Last Date Demand was Calculated; By Branch
30 SALES.HITS R#5 # of Sales Transactions Per Year
31 DEMAND.DAY R#10 Demand in Units Per Day
32 LEADTIME R#3 Lead Time in Days
33 LOW.SALE R#5 Low Sale Quantity
34 E.O.Q. L#6 E.O.Q.

35 BUYPKG R#6
Buy Package Quantity - used for rounding up in
Purchasing

36 TREND R#3 Trend % for Forecasted Demand.
37 SERVICE.STOCK R#5 Service Stock
38 LOST.SLS.CTRL R#4 Lost Sales Control%
39 BO.TOL.QTY R#6 Forecasting Will Exclude Sales >= to this Value
39 EXCP.SLS.% R#5 Exception Sales Control %
40 EOQ% R#2 Carrying Cost Percent to Use in EOQ Formula

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 210

41 EOQ$ R#4 Reorder Cost Per Line Item to Use in EOQ Form
42 BLANK3 L#6 Not Yet Used

43 STOCK L#1
The STK Field in the Inventory Maintenance Sub
by Branch

44 DEMAND.PERIOD R#3 # of Days Used to Forecast Demand
45 RAW.HITS R#6 Raw Hits in Forecast Period
46 RAW.DEMAND R#6 Total Quantity Sold Over Demand Period
47 DAYS.OUT R#8 Days Out of Stock
48 BR.LS.MULT R#5 Lost Sales Multiplier Actually Used; 1.00=No
49 HI.TRANS R#6 Quantity of Largest Transaction

50 EXCP.QTY.EXCLUDED R#15
Largest Sale Within Forecast Period That is
excluded

50 TREND.FACTOR R#12 Trend Factor Used
51 SAFETY.FACTOR R#3 Manual Safety Factor
52 COMP.QTYS R#5 Multi-Value List of Components Quantities
53 COMP.PNS L#10 Multi-Value List of Component ID Numbers
54 COMPONENT.OF.KIT R#6 Internal ID#s of Kits this product is part of
55 SUBSTITUTES R#6 List of Substitutes
56 SUBS.BRS R#3 Branch Listings Where Subs in Attr#55 Are
57 SUBS.NOTES L#30 Notes Pertaining to Multi-Valued Substitutes
58 DONT.FORGET.MSG L#35 Remind Hot Key in Product File
59 SEASONAL R#1 Seasonal Flag Y or N
60 ADD.DMD.BASE L#1 Add demand of other product basis U=Units
61 BR.MM.EXP R#10 Min/Max Expiration Date
62 LEAD.FACTOR R#3 The # of Receipts Looked at Going Back from
63 UPC# L#20 UPC# & user defined upc#s - 5 multi-values
64 ADD.DMD R#5 IDs of Other Products Whose Demand is Being
65 BR.LABEL.PER R#5 Label per Quantity
66 ALT.DESC L#35 Alternate Description for product
67 MERGE.PN L#10 Keeper Product this item was merged
68 PASS.DISC R#5 Pass-along Discount.
69 FREIGHT R#12 Freight Charge by Branch
70 NO.PRINT L#1 Price Book No Print Flag. Located Alt-P to Alt-R

71 DISC.CLASS L#3
Price Sheet Discount Class; For Use in Price Sheet
Maint

72 BUY.GRP L#12 Buy Group for Buy Matrix
73 SELL.GRP L#12 Sell Group for Selling Matrix
74 SER# R#1 Serial # 'I'nbound, 'O'utbound, 'A'uto, 'N'one
75 COMM.GRPS L#20 Commission Groups
76 QTY.BRK R#5 Price Break Quantities Fields -- Multi-Valued
77 QB.UM L#2 Quantity Break Unit of Measure
78 PKG.DIV L#1 Package Divisible: Null or Y.
79 CALC.DMD R#1 If Y, Use Calc Demand for Purchasing
80 HAZARD.DATA L#30 Hazard Data
81 BR.HITS R#4 Branch Hits
82 NET.HITS R#4 Network Hits
83 CW.TYPE L#1 Central Whse Type T=Top Down; B=Bottom Up
84 FREIGHT.FACTOR R#10 Cost Freight Factor
85 COMP.CMTS L#35 Kit Components Comments

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 211

86 KIT.OPTS L#1 Kit Options
87 COMP.SPOIL R#6 Component of Kit Spoil %
88 POINTS.DATA R#20 Points Data
89 UET.DATA L#20 Unquality Event Parameter Control
90 STOCK.ITEM L#1 Stock Item
91 CERT.REQ L#11 Cust Certification Required to Buy
92 BUDGET.GRP L#15 Budget Group
93 XREF.DATA L#40 Cross Reference data for HTML connection.
94 CUST.SERV.STOCK L#15 Product Inventory for Customer Service Stock
95 SUBS.TYPE L#5 Substitute product types
96 SUBS.SUG.QTY L#8 Substitute Suggested Sell Qty
98 TEMP.NEW.LOC L#12 TEMP.NEW.LOC - you may trash this after 2-1-98
99 MIN.LEAD.FACTOR R#2 Minimum Lead Factor

Product Price File Layout

Field # Field Name Just/Width Field Description

1 LIST-PER R#4 Quantity of selling basis units
2 PER.UM L#2 Description of price per unit; EA,C,M
3 PER.QTY R#8 Price Per Qty related to 2; 1,100,1000
11 BASIS-1 R#10 Usually LIST PRICE
12 BASIS-2 R#10 Selling Basis -- By Effective Date (Value)
13 BASIS-3 R#10 Selling Basis -- By Effective Date (Value)
14 BASIS-4 R#10 Selling Basis -- By Effective Date (Value)
15 BASIS-5 R#10 Selling Basis -- By Effective Date (Value)
16 BASIS-6 R#10 Usually Replacement Cost
17 BASIS-7 R#10 Usually Standard/Market Cost
18 BASIS-8 R#10 Selling Basis -- By Effective Date (Value)
19 BASIS-9 R#10 Selling Basis -- By Effective Date (Value)
20 BASIS-10 R#10 Selling Basis -- By Effective Date (Value)
21 BASIS-11 R#10 Selling Basis -- By Effective Date (Value)
22 BASIS-12 R#10 Selling Basis -- By Effective Date (Value)
30 BASIS-20 R#10 Selling Basis -- By Effective Date (Value)

Searching for a Dictionary Item using TCL

In TCL you can use the SEARCH command to find a dictionary item. The following
example returns a list of dictionary items in the AR file that use the TRANS command.
You can also do the same search for the string FIELD.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 212

Appendix C
File Layouts for Release 8

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 213

Entity File Layout Release 8
ENTITY file Dictionary Items
Dictionary ID............ Description....................................... Typ Attr Val. Just
@ID @ID D 0 L
CUST_ID Customer ID D 0 R
VEND_ID Vendor ID D 0 R
NAME Entity Name D 1 L
ADDRESS Entity Address D 2 L
ADDRESS2 Address Second Line D 2 2 L
CITY City D 3 L
STATE State D 4 L
ZIP_CODE Zip Code D 5 R
COUNTRY Country D 6 L
ENTITY_TYPE Entity Type MV by position D 7 L
IS_BILL_TO Is Bill To Customer D 7 1 R
IS_SHIP_TO Is Ship To Customer D 7 2 R
IS_BR_ENTITY Is Branch Entity D 7 4 R
IS_PAY_TO Is Pay To Vendor D 7 5 R
IS_SHIP_FROM Is Ship From Vendor D 7 6 R
IS_BR_ACCOUNT Is Branch Cash Account Customer D 7 7 R
IS_FREIGHT_VENDOR Is Freight Vendor D 7 8 R
IS_PROSPECT Is Prospect Customer D 7 9 R
IS_MFR Is Manufacturer Vendor D 7 10 R
SORT_BY Sorts ENTITY file D 8 L
INDEX Index (used for searching) D 9 L
BILL_TO Bill To ID (for Ship To) (Customer) D 10 R
PAY_TO Pay To ID (for ship from) (Vendor) D 11 L
SHIP_FROMS List of Ship-From Vendors for Pay-To entity (Vendor) D 12 R
CLASS Customer Class D 13 L
SHIP_TOS List of Ship-To Customers For Bill-to entity (Customer) D 14 R
EDI_ID EDI Group ID D 15 L
CONTACTS Contacts D 16 L
PHONE_NBRS Phone Numbers D 17 L
OE_MESSAGES Order Entry Message (upto 10 lines of text) D 18 L
OE_TRIGGERS Order Entry Triggers (Customer) Fax, email etc. D 19 L
ORDER_LIMIT Order Limit D 20 R
WIP_DATA Work In Process Data D 21
WIP_DAYS Work In Process Days D 21 2 R
WIP_IDS Work In Process Ids D 21 1 L
WIP_SETUP_COSTS Work In Process Setup Costs D 21 3 R
WIP_UMS Work In Process Unit of Measures D 21 5 L
WIP_UNIT_COSTS Work In Process Unit Costs D 21 4 R
CREDIT_LIMIT Customer credit limit D 22 1 1 R
JOB_LIMIT Job Limit D 22 1 3 R
PAST_DUE_LIMIT Customer Past Due Limit D 22 1 2 R
NS_DEPOSIT Deposit amount required for NonStock items D 22 2 3 R
PAST_DUE_DAYS Customer Past Due Days D 22 2 1 R
STOCK_DEPOSIT Deposit amount required for Stock items D 22 2 2 R
CREDIT Credit Specifications D 23 R
IS_COD Is Cod Customer D 23 1 R

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 214

IS_COD_CREDIT Is Cod Customer when credit limit exceeded D 23 2 R
REQ_APPROVAL Print approval required message on all shipping tickets D 23 3 R
REQ_APPROVAL_CREDIT Print approval required message on ship tickets override D 23 4 R
NO_OE No Order Entry D 23 5 R
NO_OE_CREDIT No Order Entry when credit limit exceeded unless a D 23 6 R
NO_OE_AUTH No Order Entry regardless of credit limit unless a D 23 7 R
NO_PRINT_CREDIT No printing of shipped ticket when credit exceeded D 23 8 R
NO_PRINT_AUTH No printing of shipped ticket unless authorized D 23 9 R
AUTH_BR_DATA Branches & Territories Customer/Vendor has access D 24 L
AUTH_BR List of Branches D 24 1 L
ACTIVE_BR Active Branches (1 = Yes, Null = No) D 24 2 R
BR_ACT_LEVEL Branch activation level D 24 3 R
ONE_TIME_ACT_LEVEL One-Time activation level D 24 4 R
PRICE_CLASS_OVRD Price Class Override vm1-Matrix Prices, vm2-Type C D 25 L
OVERRIDE_TERMS Overridden Invoice Terms Code for Service Charges 1 D 26 R
AUTH_PERSONNEL_REQD Authorized personnel only 1 = Y D 27 R
CUST_TERMS Customer Payment Terms D 28 L
AUTH_NAMES Authorized buyers to place sales orders D 29 L
AMT_ALLOWED Max order amount for authorized buyers D 30 R
COMPANY_CHECK Accept Company Checks 1 = Y D 31 1 R
PERSONAL_CHECK Accept Personal Checks 1 = Y D 31 2 R
TAX_EXC_GROUPS Tax Exception Groups D 32 L
TAX_STATE_CODES Customer State Tax Exempt Code D 33 L
TAX_EXP_NBR Tax Exempt Number D 34 L
PRICING_TYPE Customer Pricing Type / Vendor Type D 35 L
TAX_JUR_OVERRIDE Tax Jurisdiction Override D 36 L
APPLY_CREDITS Apply credits to oldest buckets 1 = Y D 37 R
USE_DFLT_BT_CR 1=Use Dflt 2=Use Billto (Credit information) D 38 R
FREIGHT_OUT_EXEMPT Customer is exempt from outgoing freight charges D 39 1 R
FREIGHT_IN_EXEMPT Customer is exempt from incoming freight charges D 39 2 R
SEPERATE_BILL_TO_CREDIT Separate AR from Bill-To D 40 R
OUTSIDE_SALES Outside Salesperson D 41 L
PRICE_STYLE Pricing Print Style for Orders D 42 L
BACK_ORDER_STATUS Backorder Status D 43 L
INSIDE_SALES Inside Salesperson D 44 L
PO_NUM_REQ Purchase Order Number required D 45 1 L
DEFAULT_PO_NBR Default Purchase Order Number D 45 2 L
DEFAULT_RELEASE_NBR Default Release Number D 45 3 L
SHIP_VIA Default Ship Via code D 46 L
PAYMENT_DAYS Payment Days D 47 R
START_DATE Start Date (Create Date) D 48 R
USER_DEFINED D 49
INVOICE_PRINT_COPIES Number Invoice Print Copies D 50 1 R
INVOICE_FAX_COPIES Number Invoice Fax Copies D 50 2 R
INVOICE_SELECT_CODE Invoice Select Code D 51 L
SHIP_INST_DFLT Default shipping Instructions D 52 L
HOME_BR Home Branch D 53 L
HOME_TERRITORY Home Territory D 54 L
EXPENSE_DIST_CODE Expense distribution codes (Vendors) D 55 L
EXPENSE_ACCOUNT_NBR Expense Branch~Account numbers (Vendors) D 56 L
EXPENSE_PCT Expense distribution percentages D 57 R

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 215

VENDOR_TERMS Vendor Payment Terms D 58 L
VENDOR_FREIGHT_TERMS Vendor Freight Terms D 59 L
OVER_SHORT_PERCENT Maximum% for A/P Invoice can be over/short D 60 R
OVER_SHORT_DOLLAR Maximum dollar amount A/P Invoice can be over/short D 61 R
VENDOR_BACK_ORDER Vendor Backorder status D 62 L
STATEMENT_TYPE alance Fwd/<O>pen Item Statement D 63 L
BATCH_STATEMENT Batch Statement D 64 L
DELETE_FLAG Delete Flag D 65 L
ALT_CUST Alternate Customer/Vendor Id D 66 L
REBATE_DATA Rebate Product IDs and Price Line # D 67 L
REBATE_PRODUCT_ID Product, Price Line, Sell Group D 67 1 L
REBATE_ENTITY_ID Rebate Vendor D 67 2 L
REBATE_EXPIRE_DATE Rebate Expiration Date D 67 3 L
REBATE_NUMBER Rebate Contract Number D 67 4 L
ROE_DATA Remote Order Entry Data D 68 L
ROE_LOG_BID Remote Log Bids For Review D 68 1 L
ROE_LOGORDERS Remote Log Orders For Review D 68 2 L
ROE_DFLT_MSG_LOGIN Remote Default User Messaged Upon Log In D 68 3 L
ROE_DFLT_MSG_NEW_ORD Remote Default User Messaged With New Order Number D 68 4 L
ROE_SLAVE_PRT Remote Slave Printer (Blank=No ROE Printing) D 68 5 L
ROE_VALID_STATUS Remote Valid Order Statuses D 68 6 L
ROE_LOGIN_MSG Remote Log In Message D 68 7 L
ROE_DFLT_MSG_ORD_CHG Remote Default User Messaged With Order Changes D 68 8 L
ROE_SHOW_PROD_AVAIL Remote Show Product Availability D 68 9 L
ROE_DFLT_ORD_STATUS Remote RDC Default Order Status D 68 10 L
ROE_B2B_PASSWORD Remote B2B/Web Order Entry Password D 68 11 L
ROE_LOGORD_ERRORS Remote Only Log Order With Errors D 68 12 L
ROE_PKG_QTY Remote RDC Round To Sell Package Qtys D 68 13 L
ROE_MSG_VALID_USERS Remote Message Valid Users D 68 14 L
ROE_SHOW_AVAIL Remote Show Availability For Order Branches D 68 15 L
ROE_DISCOUNT Remote Order Entry Discount Percent D 68 16 R
ROE_AR_INFO Remote Web Order Entry A/R Information Password D 68 17 L
ROE_SHIP_VIAS Remote Valid Ship Vias D 68 18 L
ROE_SHOW_LIST_PRC Remote Show List Price In Web Order Entry D 68 19 L
ROE_ORD_QUEUE Remote Order Queue Users D 68 20 L
ROE_CC_ENTERED Remote Force Credit Card Info To Be Entered D 68 21 L
ROE_REQ_ORD_BY Remote Required Ordered By D 68 22 L
ROE_ALLOW_NEW_ST Remote Allow Creation Of New Ship To Customers D 68 23 L
ROE_HIDE_LED_BUTTON Remote Hide Ledger Button D 68 24 L
ROE_HIDE_ACCT_INQ Remote Hide Account Inquiry Button D 68 25 L
ROE_B2B_POST_URL Remote B2B Post URL D 68 26 L
ROE_LOGOFF_URL Remote WOE Logoff URL D 68 27 L
ROE_HIDE_ZERO_PRC Remote Hide Products With Zero Pricing D 68 28 L
ROE_MAX_SHP_DISPLAY Remote Maximum Number of ST's to Display Per Page D 68 29 R
ROE_PDW Remote PDW flag D 68 30 L
ROE_CATALOG Remote Catalog flag D 68 31 L
ROE_ALLOW_PRC_VAR Remote Allow Pricing Variance Percentage D 68 32 L
ROE_PREVENT_BID_MODS Remote Prevent Mod of Non-WOE Bids D 68 33 L
PRICE_LINES Valid Price Lines D 70 L
INIT_STAT_OVERRIDE Initial Status Override D 71 L
SALES_SRC_OVERRIDE Sales Source Override D 72 L

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 216

SHIP_BR_OVERRIDE Shipping Branch Override D 73 1 L
PRICE_BR_OVERRIDE Pricing Branch Override D 73 2 L
PRINT_KIT_COMPS Print Kit Components? (Y/N/Default) D 74 L
REQUIRED_LEAD_TIME Required Lead Time days D 75 R
MAX_EARLY_SHIP_DAYS Maximum Early Ship Days D 76 R
SIC_CODE SIC Code D 77 L
CUSTOMER_SELECT_CODE Customer Select Codes D 78 L
SOE_USER_DEF_DOC SOE Document Printing ID D 79 L
PARENT_STATEMENT_ID Parent Statement Customer ID D 80 L
RANK Customer Ranks (A to G) D 81 L
POINTS_DATA Points Data D 82 L
SINGLE_INVOICE_FLAG Single Invoice Flag (Y=1) D 83 R
MAX_COLLECT_DAYS Maximum Collection Days D 84 R
CONTRACT_PRICING_IDS Contract Pricing IDs D 85 L
UET_EARLY_DAYS UET Early Days Allowed D 86 1 R
UET_LATE_DAYS UET Late Days Allowed D 86 1 R
NORMAL_DELIVERY_TIME Normal delivery time of day D 87 R
DUNN_BRADSTREET_NBR Dunn and Bradstreet Number D 88 L
CERTIFICATION_DATA Certification Information D 89 L
CERTIFICATION_CODE Certification Code D 89 1 L
CERTIFICATION_NAME Person who holds certification D 89 2 L
CERTIFICATION_NBR Certified persons certification number D 89 3 L
CURRENCY_TYPE Primary Currency Type (Blank=System) D 90 L
ALT_BILL_TO_NAME Alternate Bill-To Name D 91 L
ALT_BILL_TO_ADDRESS Alternate Bill-to Address D 92 L
ALT_BILL_TO_ADDRESS1 Alternate Bill-to Address1 D 92 1 L
ALT_BILL_TO_ADDRESS2 Alternate Bill-to Address2 D 92 2 L
ALT_BILL_TO_ADDRESS3 Alternate Bill-to Address3 D 92 3 L
ALT_BILL_TO_ADDRESS4 Alternate Bill-to Address4 D 92 4 L
ALT_BILL_TO_ADDRESS5 Alternate Bill-to Address5 D 92 5 L
ALT_BILL_TO_CITY Alternate Bill-To City D 93 L
ALT_BILL_TO_STATE Alternate Bill-To State D 94 L
ALT_BILL_TO_ZIP Alternate Bill-To Zip-code D 95 L
ALT_BILL_TO_SORTBY Alternate Bill-To Sort-by D 96 L
ALT_BILL_TO_USE_ST Alternate Bill-To - Use Ship-To Flag D 97 R
EMAIL_PREFERENCE Email Preference (Plain or Html) D 98 L
WOE_FORMS WOE Custom Forms D 99 L
VEND_UBAP_GL_ACCT UBAP Override GL # (Vendor Addl screen) D 100 L
CC_DATA Credit Card Data D 101 L
CC_TYPE Credit Card Type D 101 1 L
CC_NUMBER Credit Card Number D 101 2 R
CC_EXP_DATE Credit Card Expiration Date D 101 3 R
CC_NAME Credit Card Name D 101 4 L
CC_ADDL_INFO Credit Card Additional Information D 101 5 L
CC_ZIP Credit Card Zip Code D 101 6 L
CC_AUTH_TYPE Credit Card Authorization Type D 101 7 L
CC_ADDRESS Credit Card Address D 101 8 L
CC_INFO_TYPE Credit Card Info Type (None, Prompt, Required) D 101 11 L
CC_REF_NBR_TYPE Credit Card Ref Num Type (Release #, Cust PO, Invoice

etc)
D 101 12 L

CC_OVR_TERMS Credit Card Override Terms D 101 13 L
CREDIT__CARDCHG_TAX Credit Card Charge Tax D 101 14 L

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 217

1099_TAX_ID 1099 Tax ID (Vendor) D 102 L
VALID_POS List of Valid Purchase Order Numbers D 102 L
FREIGHT_DAYS Freight Days (Vendor) D 103 L
RESTRICT_SUBS Does Customer accept substitutes? (1=Y) D 104 L
TAX_EXEMPT_CODES Tax Exempt Codes (Customer) D 105 L
LINE_ITEM_TAX Line Item Tax (^^=Disabled; 1=Always Prompt;2=Not D 106 L
ACL_USERS Access Control List - Users D 107 L
ACL_LEVEL Access Control List - User Level D 108 R
CAGE_CODE Cage Code (Vendor) D 109 L
COMMISSION_TYPE Split Commission Type D 110 L
COMMISSION_SLSPERSON Split Commission Salespeople D 111 L
COMMISSION_PCT Split Commission Percent D 112 R
CUST_ALLOW_DUP_ORD Disable Duplicate Order Check D 113 L
WEB_ADDRESS World Wide Web Address D 114 L
EMAIL_ADDRESS Email Addresses D 115 L
EMAIL_TYPE Email Type D 116 L
FREIGHT_DATA Freight Data D 117 L
FREIGHT_EXEMPT_HANDL Freight Exempt Handling D 117 1 L
FREIGHT_INSR_REQR Freight Insurance Required D 117 2 L
FREIGHT_XTRA_HANDL Extra Handling Charge D 117 3 L
FREIGHT_MIN_EXEMPT Minimum Amount for Freight Exempt D 117 4 R
CARRIER_ACCOUNT_DATA Carrier account number and type D 118 L
WRITER_COMM_PCT Writer Overridden Commission Percent D 119 1 R
INSIDE_COMM_PERCENT Inside Salesperson Overridden Commission Percent D 119 2 R
OUTSIDE_COMM_PCT Outside Salesperson Overridden Commission Percent D 119 3 R
COMM_REVIEW_DATE Overridden Commission Percent Review Date D 119 4 L
OVERRIDE_COMM_REASON Overridden Commission Reason D 119 5 L
ALT_BILL_TO_FAX_NBR Alternate Bill To Fax D 121 L
INTERNAL_NOTES Default Internal Notes D 122 L
LAST_PRICE_CHECK Flag for using Last Price D 123 L
CONSIGNED_INVENTORY Does customer use consignment inventory (1=Y) D 124 1 L
CONSIGNED_SHIP_TO Ship-To used for consignment inventory D 124 2 L
CREDIT_MANAGER Credit Manager for Credit Queue D 125 L
ANTICIPATION_CREDIT Anticipation Credit (Y/N) D 126 L
UPDATED_DATE Last date and time record was updated D 127 L
INCLUDE_SVC_CHARGES Include service charges in service charge calculation D 128 L
KEYWORDS Keywords used for searching D 129 L
COMMISSION_PLAN Commission Plan D 130 L
EMAIL_INDEX Number of E-mail records D 131 L
EXCL_FROM_INDEX Exclude from Index searching D 132 R
DROP_POINT Drop Point Branch (Customer) D 133 L
TIME_ZONE Time Zone D 134 L
ROE_USER_LOGIN User to be messaged upon Login D 136 1 L
ROE_USER_ORD_CHANGE User to be messaged with order changes D 136 2 L
ROE_USER_NEW_ORDER User to be messaged with new orders D 136 3 L
ROE_ORDER_QUEUE_USER User to be messaged for Remote Order Queue D 136 4 L
PRICE_PRECISION Price Precision Decimal Places D 137 R
EXCL_SERVICE_CHARGE Exclude Service Charge from Service Charge Calc (1 D 138 R
PRODUCT_ZONES Product zones customer is allowed to buy from D 139 L
ECOMM_VENDOR_ID Ecomm Vendor ID D 140 1 L
ECOMM_WWW_ADDRESS Ecomm WWW Address D 140 2 L

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 218

ECOMM_PRODUCTS Products, Lines, & Groups allowed for Ecomm D 140 4 L
ECOMM_CUST_ID Ecomm Customer ID D 140 5 L
ECOMM_PASSWORD Ecomm Password to access account D 140 6 L
REMIT_TO_OVERRIDE Remit to override address ID D 141 L
MIN_CHECK_AMOUNT Minimum Check Amount D 142 1 R
MAX_DAYS_SINCE_POSTED Maximum Days Since Posted D 142 2 R
BO_PRINT_OPTION Backorder Print Option D 143 R
DEMAND_BR Demand Branch Override D 144 L
TEMPORARY_EXPORT Temporary Export D 145 L
COLLECT_Q_LAST_CALL Last time customer was called from A/R Collection D 146 1 R
COLLECT_Q_NEXT_CALL Next called scheduled from A/R Collection Queue D 146 2 R
COLLECT_LETTER_SENT Was collection letter sent to customer D 146 3 R
COLLECT_LETTER_TYPE Type of collection letter sent to customer D 146 4 L
PRINT_STAT_OVERRIDE Print Status Override D 147 L
CATEGORY_ID Category Id D 148 L
EDI_GRP_ID EDI ISA Group ID D 149 L
SOLAR_PROCURE_PRI Solar Procurement Priority D 150 R
ROUTE_TYPES Route Types D 151 L
ROUTE_VENDORS Route Vendors D 152 L
ROUTE_CUSTOMERS Use Routing Customer D 153 L
EXCL_CONSIGN_CREDITS Exclude Consignment Credits (1=Y) D 154 R
ECOMM_IDS ECommerce Unique Identifiers for this account D 155 L
RESTRICT_PRICING Restrict Pricing in SOE (1=Y) D 156 R
DROP_POINT_BR Vendor Drop point branch D 157 L
ADDITIONAL_NAME Additional Name D 158 L
SEPARATE_CHECK_PRINT Vendor requires separate check printing for each I D 159 R
STAGING_LOCS Staging Locations (Customer) D 160 L
VENDOR_GL_FREIGHT_OVERRID Freight G/L Account Override (Vendor) D 160 L
VEND_GL_FREIGHT_OVER Freight G/L Account Override (Vendor) D 160 L
CREDIT_RELEASE_PCT Customer Credit Release Percentage D 161 R
W9_RECEIVED_DATE W-9 Forms Received Date D 162 1 R
CERT_INS_RCVD_DATE Certificate of Insurance Received Date D 162 2 R
STAGING_LOCS_BR Staging Locations Branch D 163 L
PASS_ALONG_DISC_PCT Pass Along Discount Holdback Percent D 164 R
PO_TARGET Purchase Order Target & Value D 165 L
REQUIRE_CHECK_VERIFY Require check verification (1=Y) D 166 R
EXCL_COLLECT_INVOICE Exclude Collect Invoices (1=Y) D 167 R
MASTER_JOB_BID_NBR Master Job Bid Order Number D 167 L
CONSOLIDATE_INVOICE Consolidated Invoice Flag (1=Y) D 168 R
STATEMENT_CYCLE Statement Cycle D 169 L
PULL_CODE Pull Code D 170 L
PAY_VIA_EFT Payment Via Electronic Funds Transfer D 171 1 L
EFT_PAY_METHOD Electronic Funds Transfer Payment Method D 171 2 L
ACH_FORMAT ACH Format D 171 3 L
ACH_ROUTING ACH Routing/Transit # D 171 4 R
ACH_ACCOUNT ACH Account # D 171 5 R
ACH_ACCOUNT_TYPE ACH Account Type D 171 6 L
TAX_EXEMPT_EXP_DATE Tax Exemption Expiration Date D 172 R
ROUTE_BR Route Branches D 173 L
INVOICE_PRINT_STYLE Invoice Print Style D 174 L
TAX_CITY_CODE Tax City Code D 175 1 L

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 219

TAX_COUNTY_CODE Tax County Code D 175 2 L
ASN_VENDOR_TYPE ASN Vendor Type (Vendor) D 176 L
VENDOR_HOLD_LIST Vendor Hold List (Customer) D 176 L
ACCOUNT_MANAGER Account Manager D 177 1 L
HTTP_ADDRESS HTTP Address D 177 2 L
ASN_SHIP_CTNR_NBR ASN Accept shipment container number level D 178 R
SOE_FILL_RATE_DATA SOE Fill Rate Data D 179 L
SOE_FILL_RATE_PCT SOE Fill Rate Percentage D 179 1 R
SOE_FILL_RATE_MEASUR SOE Fill Rate Measurement D 179 2 L
CONTRACT.UPLOAD.DFLT Contract Upload Dflts D 190 L
AP_BAL_120_DAYS A/P 120 Day Balance I R
AP_BAL_30_DAYS A/P 30 Day Balance I R
AP_BAL_60_DAYS A/P 60 Day Balance I R
AP_BAL_90_DAYS A/P 90 Day Balance I R
AP_BAL_CURRENT A/P Current Balance I R
AP_BAL_FUTURE A/P Future Balance I R
AR_BAL A/R Balance I R
AR_BAL_120_DAYS A/R 120 Day Balance I R
AR_BAL_30_DAYS A/R 30 Day Balance I R
AR_BAL_60_DAYS A/R 60 Day Balance I R
AR_BAL_90_DAYS A/R 90 Day Balance I R
AR_BAL_CURRENT A/R Current Balance I R
AR_BAL_DEPOSITS A/R Deposit Balance I R
AR_BAL_FUTURE A/R Future Balance I R
BAL_OVER_60_DAYS A/R Balance Over 60 Days I R
BAL_OVER_90_DAYS A/R Balance Over 90 Days I R
CITY_ST_ZIP City, State, Zip I L
COGS COGS I R
COUNT COUNT I R
CR_LMT_JOB_LIMIT Credit Limit Job Limit I R
CR_LMT_JOB_TOTAL Credit Limit Job Total I R
CR_LMT_PAST_DUE_AMT Credit Limit Past Due Amount I L
CR_LMT_PAST_DUE_DAYS Credit Limit Past Due Days I R
CR_LMT_PAST_DUE_LMT Credit Limit Past Due Limit I R
CR_LMT_TOTAL_AR Credit Limit Total AR I R
GP GP I R
GP% GP% I R
MTD_COGS Month to Date Cost of Goods Sold I R
MTD_GP Month to Date Gross Profit Dollars I R
MTD_GP_PCT Month to Date Gross Profit Percent I R
MTD_SALES Month to Date Sales I R
POINTS_ADJ Points Adjustments I R
POINTS_BAL Points Balance I R
POINTS_EARN Points Earned I R
POINTS_USED Points Redeemed I R
SALES Sales I R
V/C Vendor / Customer Flag I L
VIEWER_ID Viewer ID I R
YTD_COGS Year to Date Cost of Goods Sold I R
YTD_GP Year to Date Gross Profit Dollars I R
YTD_GP_PCT Year to Date Gross Profit Percent I R

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 220

YTD_SALES Year to Date Sales I R

Product File Layout Release 8
PRODUCT File Listing
Dictionary ID............ Description....................................... Typ Attr Val. Just
@ID Item ID D 0 L
PRODUCT_ID Product ID D 0 R
DESC Product Description D 1 L
DESCRIPTION Product Description D 1 L
GL_PRODUCT_TYPE General Ledger Product Type D 2 L
STATUS Status 1-stock,2-non,3-misc,4-delete,5-review,6-co D 3 R
KEYWORDS Product Keywords D 4 L
PRICING_PRODUCT_ID Use Pricing From The Following Product D 5 L
UOM_QTY The Divisor Used To Determine The Unit Of Measure D 7 R
INDEX_TYPE Lookup Index Type P-Primary, C-Catalog, null-Prima D 8 L
PRICE_LINE Price Line D 9 L
UNIT_WEIGHT Weight Of A Quantity Of 1 Of This Product D 10 R
PDW_ID PDW internal product ID D 11 R
BUY_LINE Buy Line D 12 L
LOAD_FACTOR Load Factor Of A Quantity Of 1 Of This Product D 13 R
COMMODITY_CODE Commodity Code D 14 L
UOM_ABBR Unit Of Measure Quantity Abbreviation, this field D 15 L
UOM_QTY_SALES Default Unit Of Measure Quantity Used In Sales D 16 1 R
UOM_QTY_PURCH Default Unit Of Measure Quantity Used In Purchasing D 16 2 R
UOM_QTY_TRANS Default Unit Of Measure Quantity Used In Transfers D 16 3 R

UOM_QTY_ADJUST
Default Unit Of Measure Quantity Used In
Adjustments D 16 4 R

UOM_QTY_INVTY Default Unit Of Measure Quantity Used In Inventory D 16 5 R
DEFAULT_UOMS MV list of 5 default areas to use UOM from attr 15 D 16 L
PROCURE_GROUP Product procure group ID D 18 L
SELECT_GROUP Product select group D 19 L
SORT_CODE Product sort code D 20 R
EXEMPT_GROUPS Tax Exemption Group, corresponds with PRD<23> D 22 L

EXEMPT_CODES
Tax Exemption Number; Reduced Rate=1; Always
Tax=2 D 23 R

CATALOG_NBR Product catalog number D 24 R
CREATE_DATE Product creation date D 26 1 L
CREATE_TIME Product creation time D 26 2 L
CREATE_USER Product creation user D 26 3 L
CREATE_INFO Product creation information D 26 L
PER_QTY Stores default per qty for product D 35 2 R
BR_PER_QTY Stores default per qty for product D 35 L
HAZARD_PACK_GRP HAZMAT Pack Group D 40 4 L
COMPONENT_QTYS Kit component quantites VM per attr 53 D 52 R
COMPONENT_IDS Kit component product ID's D 53 R
KIT_IDS Kit product ID's that this product is a component D 54 R
SUBSTITUTES Substitute product ID's D 55 R
SUBSTITUTES_BRS Substitute branches corresponding to attr 55 D 56 L

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 221

SUBSTITUTES_NOTES Substitute notes corresponding to attr 56 D 57 L
OE_REMINDER_MSG VM list of reminder notes D 58 L
ADD_DEMAND_BASE W - Weight L - Load otherwise - Units D 60 L
SERIAL_LAST_ASSIGNED Last serial number assigned to this product D 61 L
PRIMARY_UPC_CODE Primary UPC code D 63 1 L
UPC_CODE_USER_2 UPC code - user defined 2 - cross ref in PU.IDX file D 63 2 L
UPC_CODE_USER_3 UPC code - user defined 3 - cross ref in PU.IDX file D 63 3 L
UPC_CODE_USER_4 UPC code - user defined 4 - cross ref in PU.IDX file D 63 4 L
UPC_CODE_USER_5 UPC code - user defined 5 - cross ref in PU.IDX file D 63 5 L
UPC_CODE_USER_6 UPC code - user defined 6 - cross ref in PU.IDX file D 63 6 L
UPC_CODE_USER_7 UPC code - user defined 7 - cross ref in PU.IDX file D 63 7 L
UPC_CODE_USER_8 UPC code - user defined 8 - cross ref in PU.IDX file D 63 8 L
UPC_CODE_USER_9 UPC code - user defined 9 - cross ref in PU.IDX file D 63 9 L
UPC_CODE_USER_10 UPC code - user defined 10 - cross ref in PU.IDX file D 63 10 L
UPC_CODE_USER_11 UPC code - user defined 11 - cross ref in PU.IDX file D 63 11 L
SECONDARY_UPC_CODES SVM list of all secondary UPC codes for product D 63 12 L
PU_IDS MV list of all UPC codes for this product D 63 L
ADD_DEMAND_PNS VM list of product ID's to use in calculating demand D 64 R
ALT_DESC Alternative product description D 66 L
MERGE_PN Product merge part number to keep D 67 R
HAZMAT_CLASS Hazardous class for product D 80 1 L
HAZMAT_CLASS_DESC Hazardous class description D 80 2 L
HAZMAT_ID_NBR Hazardous data ID number D 80 3 L
HAZMAT_CODE Hazardous data code D 80 5 L
HAZMAT_DATA Hazardous data for product D 80 L
CNTR_WHSE_TYPE Central Warehouse Type: Top-Down, Bottom-Up D 83 L

COMPONENT_CMTS
Kit component comments - MV by component stored
in D 85 L

KIT_PRICE_OPTS Kit price options are (2,3 only valid for non-dynamic) D 86 1 L
PRINT_KIT_COMPS Flag to print kit components D 86 2 R
KIT_COGS_OPTS Kit cogs options are (1,2 only valid for non-dynamic) D 86 3 L
KIT_COMM_OPTS Kit comm options are (1,2 only valid for non-dynamic) D 86 4 L
KIT_OPTIONS Kit options D 86 L
COMPONENTS_SPOIL Spoilage per component in attr 53 - VM delimited D 87 R
PN_CALC_TYPE Flag that will determine if points are calculated D 88 L
GL_INV_ACCT_OVRD Inventory Account Override D 89 R
CERTIFICATION_REQD VM list of certification ID's D 91 L
BUDGET_GROUP_ID Sales Budget Group ID D 92 L
XREF_AGENT XREF Agent D 93 1 L
XREF_DESC XREF Description D 93 2 L
XREF_PARAM_DATA XREF Parameter Data D 93 3 L
XREF_DATA External Reference Data D 93 L
SUBSTITUTES_TYPE VM list of substitute types corresponding to attri D 95 L
SUBSTITUTES_SUG_QTY VM list of substitute products suggested selling q D 96 R
WIP_ORDER_TEMPLATE Product work order template D 100 1 L
WIP_INCOMING_QTY WIP incoming qty that will be built when this temp D 100 2 R
WIP_PRICING WIP pricing method default D 100 3 R
WIP_COSTING WIP costing method default D 100 4 R
WIP_SERIAL_PROMPT Product work order serial number prompt check D 100 6 R
WIP_SERIAL_MASK Set serial number mask to use when auto calcing ne D 100 7 L
WORK_ORDER_INFO Product work order information - Please see indivi D 100 L
TREAD_DEPTH Original product tread depth D 103 R

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 222

PREPAID_FET Y/N flag for prepaid FET D 104 R
DIRECT_SHIP_ITEM Y/N flag for direct ship item D 105 1 R
DIRECT_SHIP_VENDOR Vendor to direct ship item from D 105 2 R
DIRECT_SHIP_INFO Flag for direct shipment item D 105 L
IS_DYNAMIC_KIT Y/N flag if product is a dynamic kit D 106 R
DUTY_CODE Duty harmonizing code D 107 1 L
DUTY_CODE_COUNTRY Duty harmonizing code country of manufacture D 107 2 L
DUTY_CODE_INFO Duty harmonizing code information D 107 L
LAST_UPDATE_DATE Product last update date D 108 1 L
LAST_UPDATE_TIME Product last update time D 108 2 L
LAST_UPDATE_INFO Product last update information D 108 L
MSDS_ID MSDS Sheet internal ID D 109 L

ADD_DEMAND_EXP_DTS
VM list of expire dates to use with attr 64 to calculate
dmd D 111 L

ADD_DEMAND_PNS_TBRS
VM list of branches to use with attr 64 to calculate
dmd D 113 L

ADD_DEMAND_CN_INFO
VM list of customer information to use when
calculating customer demand D 114 L

SUB_PRODS Associated sub-products used for master D 116 R
SUB_PROD_OPTIONS Associated sub-product options MV to attr 116 D 117 L

AUTH_BRANCHES
VM list of branches authorized for product. If null, all
branches are authorized D 118 L

MASTER_PN If this product is a sub-product, store the master PN D 119 R
EROUTE_DELIVER_TIME E-route time to deliver product D 120 R
EROUTE_VOLUME E-route special volume D 121 R
ORD_INV_FACTOR Order to inventory factor in SOE D 122 R
SECONDARY_BLINES VM list of secondary buy-lines D 124 L

BLINE_BUY_PACKS
VM list of buy pack overrides corresponding to attr.
124 D 125 R

BLINE_BUY_DIVS VM list of buy pack divisible corresponding to at D 126 R
DISABLE_DUP_CHECK Flag to disable duplicate product check in SOE D 127 R
PRODUCT_ZONES Zones product is valid to sell in - all valid zone D 128 L
PRODUCT_ZONES_INCL VM list of Include/Exclude corresponding to attr 1 D 129 L
RESTRICT_PRICE_CHNG Y/N flag to restrict price changes in SOE D 130 R
SECONDARY_SERIAL_NBR Product secondary serial number D 131 L
OE_REMINDER_BR Per reminder note in VM position in attr 58, this D 132 L
OE_REMINDER_AREA Per reminder note in VM position in attr58, this w D 133 R
PN_LENGTH Product length used for laminate cut mod D 134 R
PN_WIDTH Product width used for laminate cut mod D 135 R
PN_DEPTH Product depth used for laminate cut mod D 136 R
DETAIL_LOT_HOLD Exclude detail lot from available if on hold D 137 1 L
DETAIL_LOT_QUALITY Exclude from detail lot if quality or rank are not D 137 2 L
DETAIL_LOT_INFO Detail lot information D 137
MOD_PROC_STEPS Modified product processing steps D 138 L
MOD_PROC_LEAD Modified product processing leads D 139 L
WIZARD_SUBROUTINE Product wizard subroutine D 140 L
WIZARD_TAG_DATA Tag data used for wizard subroutine - free form data D 141 L
TAG_ALONG_PNS Required tag along products for substitute items. D 143 R
PARENT_TAG_ALONG Product that this product is a tag along for D 144 R
KIT_KEY_FLAGS VM list of flags setting for each component. D 145 R
PRORATE_KIT_PRICE Prorate kit price/cost across line items using LIS D 146 R
PROD_BR_ID Internal Id for the Product Branch File I 0 R

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 223

LEAD_TIME Lead Time in Days I 0 R
SELL_QTY Minimum Sales Quantity I 1 R
MANUAL_MIN Manual Minimum Inventory Level for Purchasing I 2 R
MANUAL_MAX Manual Maximum Inventory Level for Purchasing I 3 R
BUY_PKG Purchase Package Quantity I 4 R
TREND Trend Percentage I 5 R
SERVICE_STOCK Service Stock Quantity I 6 R
LOST_SALE Lost Sales Percentage I 7 R
LOST_SLS_% Lost Sales Percentage I 7 R
EXCP_SLS_% Exceptional Sales % I 8 1 L
FORECAST_METHOD Forecast Method S = Standard M = Median I 8 2 L
BTQ Backorder Tolerance Quantity I 8 3 R
BCKRD_TLRNC_QTY Backorder Tolerance Quantity I 8 R
FCAST.METH Forecast Method I 8 L
EOQ_PERCENT Economic Order Quantity Carrying Cost Percentage I 9 R
EOQ_% EOQ % I 9 R
EOQ_DOLLARS Economic Order Quantity Line Item Purchasing Cost I 10 R
EOQ_$ EOQ $ I 10 R
PROD_CONTROL Location Control for the Product I 11 L
STOCK_FLAG Branch Specific Stocking Control Y Always Stock, N I 12 L
SAFETY_FACTOR Safety Factor I 14 R
SEASONAL Item Seasonality I 15 L
MANUAL_EXPIRE_DATE Expiration Date for Manual Min and Max I 16 R
LEAD_FACTOR Lead Factor Determines the number of receipts to be I 17 R
LABEL_PER Label Per controls the number of labels to be printed I 18 R
FREIGHT_FACTOR DELETE ME I 19 R
FREIGHT_CHG Freight Charge I 19 R
PRICE_SHEET Vendors Price Sheet I 20 L
DFLT_LOCATION Default Location for the Product I 21 L
DISCOUNT_CLASS Vendor's Discount Class I 22 L
BUY_GROUP Buy Group I 23 L
SELL_GROUP Sell Group I 24 L
SERIAL Serial Number Tracking Control I 25 L
COMM_GROUP Commission Group I 26 L
BUY_PKG_DIVISIBLE Divisibility Flag for Buy Package Quantity I 27 L
CALC_DEMAND Include Item in Demand Calculation for Central Purch I 28 L
BR_HITS Minimum Number of Hits to Stock Item in the Branch I 29 R
NETWORK_HITS Minimum Number of Hits throughout the Central Dist. I 30 R
POINTS_DATA Customer Points Program Data I 31 R
CUST_SERVICE_STOCK Customer Specific Service Stock Data, Multi-Valued I 32 R
MIN_LEAD_FACTOR Minimum Number of Receipts to use for lead time calc I 33 R
EDI_VMI EDI Vendor Managed Inventory I 34 L
EDI Minimum Lead Factor I 34 L
PRICE_SHEET_PRT Price Sheet Print Flag I 35 L
QTY_BRK_QTY Multiple value quantity break quantities by matrix I 36 R
QTY_BRK_UOM Multiple value quantity break quantities unit of m I 37 L
PASS_DISC Percentage for Pass Along Vendor Discount I 38 R
FREIGHT_FACTOR_PCT Freight Factor Percentage I 39 R
BR_LIST Multiple Value listing of branches and territories I 40 L
FP_REG_HIT Forecasting parameter for non-seasonal items I 41 R
FP_REG_MAX_DAY Forecasting parameter for non-seasonal items I 42 R

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 224

FP_REG_MIN_DAY Forecasting parameter for non-seasonal items I 43 R
FP_MAX Forecasting parameter for seasonal items I 44 R
FP_SNL_HIT Forecasting parameter for seasonal items I 45 R
FP_SNL_MAX_DAY Forecasting parameter for seasonal items I 46 R
FP_SNL_MIN_DAY Forecasting parameter for non-seasonal items I 47 R
FP_AUTOTREND Use Auto-Trend Percentage Calculations I 48 L

FP_INCLUDE_DIR
Include Direct Shipments in the calculation of daily
demand I 49 L

MIN_GP_PERCENT Minimum Gross Profit Percentage I 50 R
LEAD_DAYS Lead Days I 51 R
RESTRICT_PRC_CHNG Restrict Price Change in Sales Order Entry Flag I 58 L
SALES_HITS # of Sales Transactions Per Year I R
AVAIL Available Inventory I R
AVG_PRICE AVERAGE PRICE I R
AVG_SALE_QTY Average Sale Quantity I R
COUNT COUNT I R
DAYS_OUT Days Out of Stock I R
DEMAND_DAY Demand in Units/day I R
DEMAND_PERIOD Demand Period I R
DOLLAR_SIGN DOLLAR_SIGN I L
EOQ EOQ I R
EXCP_QTY_EXCLUDED Largest Sale within forecast period That is excluded I R
LAST_DEMAND_CALC Last Demand Calc Date I R
LOW_SALE Low Sale Qty I R
AVG_COST Moving Average Cost I R
NO_PRINT Price Book No print Flag I L
BASIS Price Line Basis; needs column data or set common I R
PRICE_LINE_SEQ Price Line Sequence I R
RANK_BR1 Prod Rank in Branch 1 I L
RANK Product Rank I L
HI_TRANS_QTY Qty of Largest Transaction I R
RAW_DEMAND Raw demand for forecast period I R
RAW_HITS Raw Hits for Demand Period. I R
SUM_SALES_HITS Summation of Sales Hits in all branches. I R
VIEWER_ID VIEWER_ID I L

AR File Layout Release 8
Dictionary ID............ Description....................................... Typ Attr Val. Just
AR_ID AR ID D 0 L
AP_CHECK_NBR Disbursement Check Number D 1 L
CHECK_NBR Customer's Check Number from Cash Receipt D 1 L
INV_NBR Accounts Payable Vendor Invoice Number D 1 L
PO_NBR PO Number from Sales Order Header (Indexed) D 1 L
APPLIED_ID ID of Ledger record applied to this transaction. F D 2 L
APPLIED_DATE Application Dates MV'd by Application D 3 L
BR_GL General Ledger Postings: Branch~G/L ID MV'd by App D 4 L
GL_AMT General Ledger Amounts Posted MV'd by Application D 5 R
BALANCE_DUE Balance Due D 8 R
AR_BAL_DUE AR Balance Due D 8 1 R

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 225

AP_BAL_DUE AP Balance Due D 8 2 R
UBAP_BAL_DUE Unbilled AP Balance Due D 8 3 R
DISCOUNT_AMT Discount Amount (Original Amount) D 9 R
BILL_TO_CUST_ID Bill-to Customer ID D 10 R
PAY_TO_VEND_ID Pay-to Vendor ID D 10 R
DISCOUNT_DATE A/R Discount Date (A/R, A/P, XFER) D 11 R
DUE_DATE Invoice Due Date (A/R, A/P, XFER) D 12 R
SHIP_DATE G/L Posting Date (A/R, A/P, XFER) D 13 R
SHIP_FROM_VEND_ID Ship-from Vendor ID D 15 R
SHIP_TO_CUST_ID Ship-to Customer ID D 15 R
AP_DEDUCT_AMT A/P Deduct Amount D 16 R
AP_DEDUCT_REASON A/P Deduct Reason D 17 L
HANDLING_CODE Special Handling Code D 18 L
AP_DISC_OVRD_FLAG A/P Discount Override Flag (1 = Disc has been over D 19 R
STATUS Status Code (I=Invoice, $=Payment, S=Shipped Xfer, D 20 L

AP_PMT_INFO
A/P Payment Info (MV1=Payment Amount,
MV2=Discount D 21 L

PAY_ON_DATE A/P Pay On Date(s) (for Payable records it is Pay D 22 L
AP_IS_PAID_OFF A/P Invoice Paid Off Flag (1=Payable Paid in Full) D 23 R
CR_AMOUNT Cash Receipt Amount D 24 R
GRACE_DAYS Number of Grace Days from Terms Code D 26 R
INV_HOLD_CODE Invoice Hold Code D 27 L
FRT_INFO Freight vendor information. D 28 L
FRT_PAYABLE_PO Associated Purchase Order number for Freight Vendor D 29 L

CURRENCY_INFO
Currency Information (MV1=Currency Type,
MV2=Exchange D 31 R

AP_AMTS AP Amounts D 33 R
GL_SHORT_DESC G/L Postings Short Description (Displays in Alt ~) D 34 L
REV_CHECK_DISBID Reversed Check Disbursement ID for a Payable D 35 L
APPL_IDS Application Ids I L
AR_AMT AR Amount I R
BILL_IN_FGHT BILLABLE INCOMING FREIGHT I R
BILL_IN_HANDL BILLABLE INCOMING HANDLING I R
BILL_OUT_FGHT BILLABLE OUTGOING FREIGHT I R
BILL_OUT_HANDL BILLABLE OUTGOING HANDLING I R
CASHBOX_AMT Cashbox Amount I R
CASH_AMT Cash Amount I R
COGS_AMT Cost of Goods Sold Amount I R
COUNT Counter: Returns a "1" which can be total to addr I R
DISC_AMT Cash Receipts - Discount Amount I R
EXP_IN_FGHT EXPENSE INCOMING FREIGHT I R
EXP_IN_HANDL EXSPENSE INCOMING HANDLING I R
EXP_OUT_FGHT EXPENSE OUTGOING FREIGHT I R
EXP_OUT_HANDL EXPENSE OUTGOING FREIGHT I R
FGHT_IN_AMT Freight In Amount I R
INVOICE_GEN Invoice Generation I R
LEDGER_ID AR ID I 0 L
PAYMENT_DAYS Payment Days I R
SALES_AMT Total Sales Amount I R
TAX_AMT Sales Tax Amount I R
TAX_JUR Tax Jurisdiction I R
TRANS_TYPE Transaction Type I L

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 226

VIEWER_ID VIEWER ID I L

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 227

PSUB File Layout Release 8
PSUB File Release 8
Dictionary ID............ Description....................................... Typ Attr Just Width
PSUB_ID Unique string of concatenated data D 0 L 70
QTY Quantity Moved D 1 R 10
PRICE Selling Price / Purchasing Cost / Adjustment D 2 R 12

ACCOUNTING_COST
Accounting Cost (Cost of Goods Sold) / N/A on
Purchase Order D 3 R 12

DOLLAR_ENTITY_ID Dollar Entity @ID D 4 R 8
PRODUCT_ENTITY_ID Product Entity @ID D 5 R 8
OVERRIDE_PRICE Original (Matrix Determined) Override Selling Price D 6 R 12

OVERRIDE_COST
Original (Matrix Determined) Override Accounting
C D 7 R 12

KIT_PROD_ID Kit Product @ID D 8 L 10
SERIAL_NBRS Multi-valued list of serial numbers D 9 L 30
PRICE_BR Pricing Branch D 10 L 4

CONSIGN_FLAG
Consignment Flag: S - Shipping Into Consigned
Inventory D 11 L 1

LOT_ITEM Lot Billing Flag D 12 L 1
ORDER_TIME Time order was processed D 14 L 10
@Ak.0 @Ak.0 I L 10

BR
Primary Branch (shipping or pricing based on
record) I L 4

COMPONENT_POS Kit Component Position I L 3
DIFF_BR Other branch when pricing and shipping branch are I L 4
EXT_COST Extended Cost I R 14
EXT_PRICE Extended Price I R 14
FULL_ORD_ID Full Order ID I L 14
INVOICE_NBR Invoice Number I L 3
LED_DET_ID Ledger Detail ID I L 4
LOCATION LOCATION I L 12
ORD_ID ORD_ID I L 10
PRODUCT_ID PRODUCT_ID I R 10
QTY_TYPE Quantity Type I L 1
SALE_AMT Sale Amount I 0 R 12
SALE_QTY Sale Quantity I 0 R 9
SHIP_DATE Shipping Date I R 10

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 228

Appendix D
Subroutines

The following subroutines include explanations and examples:

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 229

Dictionary Subroutines

DICT.COMMON = Dictionary Common Prompts which is the prompts hotkey in dictionary
maintenance. Within this document you will see reference to this terminology with a numeric
value after the DICT.COMMON. The numbers represent the following information:

1 Branch/Territory/All (Multi value list of branches)
2 Enter Br/Tr/All
3 Enter Start Date
4 Enter End/As of Date
5 Discount Class
6 Product Location
7 Price Basis Name
8 Location Number
9 Multi Value Pos
10 Enter Br
11 Generic Prompt
12 Ignore Branch Hierarchy

DICT.AR.FIRST.SALE
 This subroutine is used from the AR file and will return a “1” if the order is the first
generation of the invoice. A dictionary using this subroutine can be used for statistical reporting
on the occurrences of a first generation order to the total number of generations that occurred for
an order.

The I-Descriptor screen of the dictionary item would look like:

DICT.AR.ITEM.CNT
 This subroutine is used from the AR file and counts the number of items on the
generation of the invoice passed back. A dictionary using this subroutine can be used for
statistical reporting relative to how many items are on each invoice generation. (Have you ever
wanted to find out your average number of items that ship out on a generation? This is data that
will help you to obtain this statistic.

The I-Descriptor screen of a dictionary using this subroutine would look like:

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 230

DICT.AR.JLI
 This subroutine is used from the AR file and is part of the indexing. The information that is
returned consists of three segments delimited by a period. The first segment is a numeric value
that returns the type of transaction which is listed below. The second segment is the date of the
posting and the third segment will return the last two digits of the order number (not the
generation of the order).

 Example of data returned from S1008886.005 is: 1.11176.86
1 = Sales Order
2 = Cash Receipt
3 = Payment on a Sales Order
4 = Purchase Order
5 = Transfer
6 = Sales Order that is paid through cash receipts
7 = Payable
8 = Disbursement
9 = Journal Entry
10 = Inventory Adjustment
11 = Work Order
12 = Rental

DICT.AR.LEDL.INFO

This subroutine is used from the AR file. The two requirements when using this
subroutine in an I-descriptor is to pass in the @ID and the word the system needs to find
in the change log for the transaction.

The system will return the user, date, time, port and change log as shown below.
S0704030.001
DAVIDB 03/21/00 02:51pm /pts/4 DAVIDB Authorized : Overcommitted

An example of an I-Descriptor using this subroutine is:

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 231

DICT.AR.LEDL.PRT
Similar to the subroutine above it is used only from the AR file. This routine will return
the date, time and user when a ship ticket, pick ticket, invoice, cash sale etc. has been
printed. All occurrences will display for a generation of the order.

For example the data would return:
S0422603.001 DAVIDB 09/04/96 11:54am /tty10
 Printed **** Invoice **** on 0

 DAVIDB 09/19/96 03:06pm /tty10
 RePrinted **** Invoice **** on 0

 DAVIDB 11/04/96 11:41am /tty10
 RePrinted **** Invoice **** on 0

An example of the I-Descriptor screen for a dictionary item using this subroutine would
look like:

DICT.AR.PAY.DAYS
 This subroutine is used from the AR file. It will return the number of days it took for the
customer to pay the invoice.

DICT.AR.PRT.STAT

From the AR file this routine will display the print status of a transaction.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 232

DICT.AR.SALE
 Basically will return a « 1 » for each transaction that is an AR sale. Items excluded from
this are Journal entries, first generation of Transfers, etc.

DICT.AR.UNPD.AMTS
 This subroutine will return unpaid amounts for split payments.

DICT.AR.UNPD.DISC
 This subroutine will return the discount amount to pay on split payments

DICT.ASUB.AMT
SUBROUTINE (AMT,GLCODES)
 This routine requires the GL Code for which you want to report amounts. Also, this
routine calls in another routine called ASUB.GET.AMT.

This routine is design to return balance for a given set of auto-postings account (AR/AP/UBAP)
Generally only one account in passed in and the AR record is processed parsing through strings
in ARREC<4> and AREEC<5> filtering by start date, end date, branch, and VM positions
finally returning a balance in AMT variable
 *--
 *** AMT - Total balance for GAS account for given selection [OUT]
 *** ARREC - Dynamic AR record [IN]
 *** POS - Start and end @VM positions for balance calculation (IN)
 *** BRCHS - Valid Branches (IN)
 *** GAS - will represent GL Account #s to return the GL balance (IN)
 (Could be MV)
 *** SDT - Start Date (IN)
 *** EDT - End Date (IN)
 *** ADDL.DATA - Additional information (IN)
 *** @AM1 = CN - Bill-To customer (UBAP only)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 233

An example of an I-descriptor using this subroutine:

DICT.ASUB.ARBAL
 This routine calls in another routine called AR.GET.BAL
 The AR.GET.BAL calls in another routine called ASUB.GET.BAL

An example of an I-descriptor using this subroutine:

DICT.BR.VAL.GET
SUBROUTINE (VAL,BR,PN,ATTB.NO,SVM.NO,LOC.FLAG)
Subroutine: DICT.BR.VAL.GET

 This routine pulls branch specific data from the PROD.BR file or the PROD.CALC.BR file
calling either PRD.BR.GET.VAL or PRDC.BR.GET.VAL to get a specific attribute for a
branch. If no branch is specified then all branches are used.

 BR - Branch [IN]
 PN - Part Number [IN]
 ATTB.NO - Attribute Position [IN]
 SVM.NO - Sub-Value Mark [IN]
 LOC.FLAG - Flag to set whether to pull from PROD.CALC or PROD.BR [IN]
 VAL - Value Returned [OUT]

An example of an I-descriptor using this subroutine is:

DICT.BR.VALS

This subroutine is used with the PROD.LIFO file.
SUBROUTINE (VAL,ATTB)

 You need to enter the attribute number that is storing branch specific data as part of this
subroutine.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 234

DICT.CALC.AVAIL
 This routine can only be used when the @id of the file you are working in is the Internal
ID number of the product. Ex. PRODUCT.NOTES, PROD.DYNAM, PRODUCT
---*
This dictionary subroutine calculates the available quantity of a given product for selected
branches.
---*
An example of an I-descriptor using this subroutine is :

DICT.CALC.AVAIL.PN
SUBROUTINE (STK.LEVELS,PN)
 This routine can be used from any file for which you can pass in the Internal ID number
of an Eclipse product.
 Works the same as DICT.CALC.AVAIL.PN shown above.

An example of an i-descriptor using this subroutine is :

DICT.CALC.CDC.AVAIL
 SUBROUTINE (CDCAV)

Routine to calculate CDC Availability (Central Distribution Center)

An example of an I-descriptor using this subroutine is :

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 235

DICT.CALC.CN.SLS
Any file for which you can pass in the Customer’s internal ID can use this subroutine.

This subroutine requires 6 arguments to be entered for it to work. If you want to use the user
defined date range and you are not specifying a specific branch, make sure you load the prompts
on your dictionary item. (Prompts hotkey from dictionary maintenance). The three prompts to
add is the Branch, Starting date and End as of Date.

 SUBROUTINE (AMT,RANGE,AVN,BRCHS,SD,ED,CN)
 *---------Date Ranges
 * 1 = User Defined Date Range
 * 2 = MTD Date Range
 * 3 = YTD Date Range
 * 4 = Fiscal MTD Date Range
 * 5 = Fiscal YTD Date Range

 *---------AVN Definition
 * 1 = Sales
• 2 = Gross Profit

An example of an I-descriptor you can create using this subroutine is :

DICT.CALC.PBR.AVAIL
 Can only be run from a file where the @ID of each record is the internal ID of the
product. Ex. PRODUCT, PROD.DYNAM and PRODUCT.NOTES

Routine to calculate Pricing Branch’s Availability.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 236

DICT.CALC.SLS
 Can only be run from the ENTITY file
 SUBROUTINE (AMT,RANGE,AVN,BRCHS,SD,ED)
 Version# 1 - 03/24/1996 - 08:30pm - SCOTTR - **
--------Date Ranges
 1 = User Defined Date Range
 2 = MTD Date Range
 3 = YTD Date Range
 4 = Fiscal MTD Date Range
 5 = Fiscal YTD Date Range

--------AVN Definition
 1 = Sales
 2 = Gross Profit
 3 = Gross Profit Percentage
 4 = Cost of Goods Sold

DICT.CALC.SLS.ST
 Can only be run from the ENTITY file and will return values if the ENTITY is a Ship to
customer.
 SUBROUTINE (AMT,RANGE,AVN,BRCHS,SD,ED)
--------Date Ranges
 1 = User Defined Date Range
 2 = MTD Date Range
 3 = YTD Date Range
 4 = Fiscal MTD Date Range
 5 = Fiscal YTD Date Range

--------AVN Definition
 1 = Sales
 2 = Gross Profit
 3 = Gross Profit Percentage
 4 = Cost of Goods Sold

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 237

DICT.CMP.COST.CALC
SUBROUTINE (CMP.COST)
This routine will only work from the AR file.
This will return the cost for the entire generation of the AR record.

DICT.CONV.CHAR
SUBROUTINE (NEW.STR,OLD.STR,OLD.CHAR,NEW.CHAR)
 This routine will convert a string of characters to a new string of characters. You will
need to pass in the data element that stores the string of characters as well as the original
characters and the new characters that should be outputted.

DICT.CONV.VM
SUBROUTINE (VAL,ATTB)
 This subroutine will work on any file for a data element that has multiple value string of
information. You need to pass in the Attribute value that you want to convert from multi-value
marks to a “ “ (space) delimited.
 For example, the product file has multiple values in the description. Therefore if I
wanted to return the last word of the description, I would first need to convert the multi-value
marker to a space so that I can count all of the separate words. Once I have completed that task I
can return the last word.
 This is useful if you want to pull back the last value in a multi-valued field.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 238

DICT.COST.RATIO
SUBROUTINE (PER.QTY,PN)
 This subroutine is used from the PRODUCT file and will provide the Per.qty uom that is
located on the price sheet screen from product file maintenance

DICT.CRED.CTRL.GET
 This routine works off of the ENTITY file and will return the full descriptions of the
credit control parameters that are set for the customer.

and will return:

DICT.CUS.FAX.NO
 This subroutine will do a search in the contacts area of the entity file to find the
terminology “FAX”. It will do a Dcount to count down the number of value markers until it
finds “FAX”. Then it will go to the phone numbers and return the correct phone number that is
next to the FAX.

DICT.CUS.NOTES
SUBROUTINE (NTS,NOTE.ID)
 This subroutine will go out to the ENTITY.NOTES file and return the note number
specified. This will only work from the ENTITY file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 239

DICT.CUS.POINTS
 This subroutine needs to know an option that you want to pull back for the Customer
points program. This routine works from the ENTITY file

SUBROUTINE (AMT,OPT)
 The options range from 1 to 5.
 1 = Ending Balance
 2 = YTD Earns
 3 = YTD Use
 4 = YTD Adjustments
 5 = YTD Beg Balance\

DICT.DISB.AMT.GET
Routine to return the amount paid to this vendor in the date range specified
This subroutine can only be used from the ENTITY file.

DICT.EARLIEST.SHPDT
SUBROUTINE (EARLIEST.DATE,OID,GID)
 This subroutine will pull back the product’s earliest available date on a transaction if the
order id and the generation id can be passed in. This is pulling back the earliest avail date for the
entire generation.

DICT.ENT.45.AR.AMTS
This subroutine is only used on the Entity file and will pull back the balance greater than or equal
to 45 days and less than and equal to 60 days.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 240

DICT.ENT.ALL.SLS
 SUBROUTINE (AMT,STD,EDD,AVN)
--
 This subroutine gets all the sales dollars for a particular customer for all of the user's
authorized branches between the supplied start and end dates.
--
 AMT - Total amount returned.. (OUT)
 STD - Start date to get the amounts for... (IN)
 EDD - End date to get the amounts for. (IN)
 AVN - What dollar amount you want returned. [IN]
 AVN = 1 : Sales Dollars are returned.
 AVN = 2 : GP Dollars
 AVN = 3 : GP%
 AVN = 4 : COGS Dollars

DICT.ENT.AP.AMTS
SUBROUTINE (VAL,VAL.NO)

This subroutine can only be used from the ENTITY file and needs a value number passed in.
The value number is used in another subroutine that is used called AR.PREV.LIST.
Subroutine - AR.PREV.LIST
---*
This subroutine will retrieve open AR/AP items for the Customer (CN) and the As of Date
(AOD) passed in and parses out certain data, such as the AR Record Open Balances, Payment
Dates, and GL Branches.
---*
CN - Customer Number to get data for. [IN]
AOD - As of Date to get data for. (IN)
AGD - Age as of Date -> Age data as of this date. (IN)
AGT - Aging Balance Summary information, delimited by age bckt (OUT)
IDS - AR Records we picked up for the Customer & As of Date. (OUT)
DTS - G/L Date for the AR Records picked up. (OUT)
BALS - Open Balance for each AR Record passed back in IDS (OUT)
CRS - Credit Amount if the AR Record if it is in fact a credit (OUT)
PDTS - Payment Dates (OUT)
AGS - Aged Buckets that each of the AR Recs fall into (OUT)
 - 1 = Future
 - 2 = Current
 - 3 = 31-60 Days
 - 4 = 61-90 Days
 - 5 = 91-120 Days
 - 6 = Over 120 Days
 - 7 = Deposits

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 241

DICT.ENT.AR.AMTS
SUBROUTINE (VAL,VAL.NO)
This subroutine can only be used from the ENTITY file and needs a value number passed in.
The value number is used in another subroutine that is used called AR.PREV.LIST.
See above AR.PREV.LIST for the argument values.

DICT.ENT.BTST.NAME
SUBROUTINE (NAMES,ATTR)
 This subroutine can be used from any file and will return the Bill to and or ship to name
and address if the attribute number for the internal id of the customer is passed in.

DICT.ENT.CRLIM.PERC
SUBROUTINE (VAL,VAL.NO)
 This subroutine will advise the percentage of the credit limit that is being used.
The value number that needs to be used is 8. This subroutine will only work from the Entity file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 242

DICT.ENT.GET.TZ
 This subroutine can only be used from the ENTITY file and will return the time zone that
the customer belongs to.

DICT.ENT.INV.CT
 SUBROUTINE (INV.CT,NOX)
--
 This routine will return the invoice count. If NOX is specified then it will not include cancelled
invoices.
--
* INV.CT - Value returned which is the invoice count. (OUT)
* NOX - If null it will include cancelled invoices. (IN)
NOX means no x or no cancelled invoice. By indicating a “1” you are telling the system that
you do not want to see cancelled invoices. This subroutine can only be run from the entity file.

DICT.ENT.PAY
 Will return the payment amount and can only be used from the Entity file. Need to pass
in the Beginning date and an End As of Date.

DICT.ENT.PN.XREF.COMP
SUBROUTINE (VAL,REF)

This subroutine will display component information of a Kit item that is assigned to the
Customer Part Number screen in Customer File Maintenance.

CN = FIELD(@ID,"~",1)
 XPN = FIELD(@ID,"~",2)
 LOC = FIELD(@ID,"~",3)
 PN = FIELD(@ID,"~",4)
 VAL = ''
REF is either 1 – 4. If a product is on the Customer Part number screen with a customer

part number, this routine will return the (1) Component Quantity (2) Component Customer Part
number (3) Component Description (4) Component Comments

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 243

DICT.ENT.PURCH
 This routine can only work from the ENTITY file and will return the dollar amount
purchased from a vendor during a time frame specified.

DICT.ENT.SLS
 SUBROUTINE (AMT,STD,EDD,AVN)

This subroutine Gets all the sales dollars for a particular customer for the active branch between
the supplied start and end dates. The active branches come from BR$ which is part of
DICT.COMMON.
If BR$ is not set, all authorized branches are used and BR$ is set to all authorized branches.

If information for all authorized branches is required, use DICT.ENT.ALL.SLS...

 AMT - Total amount returned.. (OUT)
 STD - Start date to get the amounts for... (IN)
 EDD - End date to get the amounts for. (IN)
 AVN - What dollar amount you want returned. [IN]
 AVN = 1 : Sales Dollars are returned.
 AVN = 2 : GP Dollars
 AVN = 3 : GP%
 AVN = 4 : COGS Dollars

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 244

DICT.ENT.VAR.AR.AMTS
 SUBROUTINE (VAL,SDAYS,EDAYS,EXC.DEP)
--*
 This routine is used to return a balance for a specified date range.
 It uses Br/Tr/All and End/As Of Date
--*
 VAL - The AR balance returned (OUT)
 SDAYS - The number of days back to start the date range [IN]
 EDAYS - The number of days back to end the date range (IN)
 EXC.DEP - Exclude deposits "" or 0 = NO 1 = yes exclude deposits (IN)

DICT.ENT.VC
 This routine is used only in the ENTITY file and will return a “V” if Vendor or a “C” if
customer.

DICT.GET.AVAIL.BR
 This routine will work from the PRODUCT file and will return the products available
quantity based upon the branch provided.

DICT.GET.AVAIL.CREDIT
SUBROUTINE (CRAVAIL,CN)
This routine will calculate the amount of Credit that the given customer (CN) has available. Also
returns the customers past due and other amounts due, as well as their credit limit. This routine
calls in GET.AVAIL.CREDIT

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 245

DICT.GET.BASE
 SUBROUTINE (BASE,TYPE)
--
Used in the PRODUCT file. Must enter the basis name so that the correct base amount is
returned. Returns base amount for a product.
--
BASE - base amount of type is null, or base/per if TYPE is 1 [OUT]
TYPE - flag to determine BASE above (IN)
--
 PN = @ID
 BRS = DICT.COMMON<1>
 DT = DICT.COMMON<4>
 BASIS = DICT.COMMON<7>

DICT.GET.BASE.BR
SUBROUTINE (VAL)
This routine is used from the PRODUCT file. This routine is smart enough to get the base
amount per branch if using branch specific price sheets. The name of the local basis value comes
from the dictionary common data.

PN = @ID
BRS = DICT.COMMON<1>
DT = DICT.COMMON<4>
BASIS = DICT.COMMON<7>
VAL = ''
IF DT = '' THEN DT=DATE()
BRN = DCOUNT(BRS,VM)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 246

DICT.GET.BASE2
SUBROUTINE (BASE,PN,BR,DT)
This routine can be run from a file where the internal id of the product is available to pass in.
This subroutine is smart enough to pull the sheet that is in effect as of the date specified.

DICT.GET.BASE3
 SUBROUTINE (BASE,PN,BR)
--
 This routine will pull the current price sheet. This routine returns the Price Base based on PN,
BR and as of date which passed by common variable DICT.COMMON<4>.
--
* BASE - BASE Amount [OUT]
* PN - Product ID [IN]
* BR - Branch ID [IN]

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 247

DICT.GET.BASIS
Used only from the PRODUCT file.
This will get the basis value using the Global Basis. Therefore this one is smart enough to map
the global basis to the local basis it is pointing to in price line maintenance to return the correct
base amount.

 SUBROUTINE (PBASE,GBASIS)

 This routine is called by I-descriptors in Eclipse Dictionaries to get the local price base

 PBASE - The price base corresponding to the Global Basis OUT
 GBASIS - Global Basis you want the price base for [IN]

DICT.GET.BR.COST
SUBROUTINE (VAL,CST.BN)
This routine will work from the PRODUCT file and calls in another subroutine. You must call
in the cost basis name that you are looking to have returned.

 This routine is used to return the COST (arg) for the given Cost Basis requested by the user via
the cost basis #. The Product Log will be searched for the price for the given As Of Date /As Of
Time and assign the cost <= to that date. If there is no pricing information for the product found
in the product log, it will just return the current cost by calling GET.BASE.

 NOTE:
 Cost Basis Number Association to PROD.LOG
 COST.BN = BASIS
 8 = 1 = Average Cost
 9 = 2 = Last Cost
 22 = 3 = Average Landed Cost
 21 = 4 = Landed Cost
 23 = 5 = Frozen Average Cost
 24 = 6 = Frozen Last Cost
 26 = 7 = Frozen Average Landed Cost
 27 = 8 = Frozen Landed Cost

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 248

DICT.GET.BR.NAME
SUBROUTINE (BR.NAME,BR)
You must provide the branch number. If a file has an attribute that is storing the branch the
attribute will be passed in. That will then return the name of the branch.

DICT.GET.BYLINE.VALUE
SUBROUTINE (VAL,ATTB)
 This will return branch specific buy line data. Specify the attribute number from the
BUY.LINE.BR file that needs to be passed back.

DICT.GET.CLASS
 SUBROUTINE (PRICES,QSIGN,PRC.UOM)
---*
 This subroutine returns the price of a product for a given date, branch, Qsign and price class.. If
more than one branch is specified in the VM delimited list of BRS from DICT.COMMON<1>, a
corresponding list of prices is returned..

 If the PRC.UOM flag is not passed in, the price is returned per 1 of the lowest UOM.
---*
 PRICES - List of Prices for the Product. (OUT)
 QSIGN - Type of price requested…(-1) - Sell price [IN]

 (1) - Buy price
 PRC.UOM - Flag to return the price for the current pricing (IN)
 unit of measure..
---*
 COMMONS:
 @ID - Id of the currrent product record. (READ)
 DICT.COMMON - Where the Branches, date and Price class (READ)
 are stored.
 JUST ABOUT EVERY ARRAY (MODIFIED)

PRICES = ''
PN = @ID
BRS = DICT.COMMON<1>
PRC.DATE = DICT.COMMON<4>

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 249

CLASS = DICT.COMMON<5>

DICT.GET.CONTACT.ATTB
 SUBROUTINE (VAL,CN.IDS,ATTR1,ATTR2,MVAL,SVAL)
--
This routine is excellent for a custom file that displays contacts from the contact file.
This will get two attributes from the Contact File and will concatenate them together (ie. First
Last Name). This will work for multiple contact ids passed in a multi-valued list.
--
 VAL - Attributes concatenated together from contact file [OUT]
 CN.IDS – Multi-valued list of contact ids [IN]
 ATTR1 - First contract Attribute to be concatenated [IN]
 ATTR2 - Second contact Attribute to be concatenated [IN]
 MVAL - Multi Value position
 SVAL - Sub-value position

DICT.GET.CUS.LSHP.DT
 SUBROUTINE (VAL,CN,PN)
Dictionary subroutine that will allow you to pass in a customer ID (Eclipse Internal ID) and
Eclipse internal PN and it will pass back the last ship date (VAL)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 250

DICT.GET.CUST.PN
This routine works from the ENTITY.PN.IDS file return the customer part number, product
description and internal eclipse product id when running for a particular customer.

 SUBROUTINE (DISPS,VAL)

 * VAL = 1 Customer Part Number *
 * VAL = 2 Product Description *
 * VAL = 3 Product @ID *

 CN = FIELD(@ID,'~',1)

DICT.GET.CUST.PN.PRD
SUBROUTINE (VALS,OPT,PN)
This subroutine will need to have the option and the Product ID number passed in. It can be used
from the PRODUCT file to return customer part numbers.

DICT.GET.CUST.PN.PSUB
This routine works from the PSUB file and will return the customer’s part number or the product
description, which ever value is passed in to the subroutine.
SUBROUTINE (DISPS,VAL)

* VAL = 1 Customer Part Number *
* VAL = 2 Product Description *

DICT.GET.CUSTOMER.CREDIT
SUBROUTINE (VAL,TYPE)
 This routine can only be used from the ENTITY file and needs to have the type of credit
limit you are looking to pass back. Valid types are:
 PAST.DUE
 TOTAL.AR
 JOB.TOT
 CREDIT.LIMIT
 PAST.DUE.LIMIT

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 251

DICT.GET.DISCOUNT
 SUBROUTINE (DISC.AMT)
--
Returns true discount amount from AR record by totaling all of the discounts on this AR ID.
This routine can only be used from AR file.
DISC.AMT - Total Discount Amount Returned (OUT
--
* NOTE: @RECORD is assumed to be the AR file.

DICT.GET.ENT.CONTACTS
 SUBROUTINE (VAL,CN,PASSER)
Because you are passing in the CN number, this subroutine can be used from any file for which
the ENTITY id can be passed in. You must fill in the “passer” which is listed below as to the
type of information from the contact file you want to return.
--*
 This subroutine returns a multi-valued list of contact information from the contact file for a
given entity. The information returned is based upon the value passed into the routine in the
PASSER argument. For example, if PASSER<1> is 'ID', then the return list contains a list of
contact IDS for the entity.
This routine is currently only called from CONTACT_LIST I-Descriptor in ENTITY.
--*
 VAL - Multi value list of information specified in PASSER [OUT]
 CN - Entity ID [IN]
 PASSER - Specifies data to return as follows: [IN]
 Numeric or comma-delimited numeric - Attribute, Value, Sub-value to retrieve
 'ID' - Returns list of contact IDS for this Entity
 'NAME' - Returns list of full contact names (first middle last)
 'LNAME' - Returns list of full contact names (last, first middle)
 'PHONE#' - Returns list of phone number defined where # is
 (ex: PHONE1 returns list of first number of every contact)
 'PDESC#' - Returns list of phone descriptions at # specified
 'PTYPE=TYPE' - Returns phone number that corresponds to TYPE where TYPE defines what
type we're looking for.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 252

DICT.GET.ENTITY.ATTR
SUBROUTINE (VAL,CN,ATTR,MVAL,SVAL)
If you have then entity id, this subroutine can be used from any file. You can specify the
attribute number, multi-value and sub-value position to pull back.

DICT.GET.ENTITY.BR.VAL
 SUBROUTINE (VAL,ATTR,USE.CN)
--
This routine will return the branch specific value for the attribute passed in from the
ENTITY.BR file. If branch is "ALL", we will retrieve the value from the ENTITY file. The
attributes are defined control records, CUS.BR.CATEGORY and EN.BR.CATEGORY,
depending upon entity type.
--
* VAL - Value passed out stored in record [OUT]
* ATTR - Attribute to retrieve value for in ENTITY.BR [IN]
* USE.CN - Customer to get data for (blank = @ID) (IN)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 253

DICT.GET.FIRST.SOLD
SUBROUTINE (FIRST.VAL,OPT,PN)

Option is either “” or “1”. “” will return the first purchase cost and “1” will return the first
purchase date. This subroutine can be used on any file where you can specify the internal id
number of the product.

DICT.GET.ID.LIST
 SUBROUTINE (ID.LIST,FILENAME,ID,ATTR,CONV)

Returns a list of values separated with a value marker.

DICT.GET.LAST.PURCH
 SUBROUTINE (VAL,OPT,PN,BR,PRC.DATE)

IF OPT = 1 returns LAST.DATE else returns LAST.COST
 This routine will return a null LAST.DATE if there is no last P/O
 Found...

DICT.GET.LAST.REC
 SUBROUTINE (LAST.VAL,OPT,PN)
This routine can work from any file where you have the internal id number of the product.
Opt 1 = LAST.DATE
Opt 2 = LAST.PURCH

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 254

DICT.GET.LASTDATE
SUBROUTINE (LPDATE)
Can only be run from the ENTITY file and will return the last transaction date for the entity.

DICT.GET.LASTPAY
SUBROUTINE (LPAMT)
Can only be run from the ENTITY file and will return the last payment amount for the entity.

DICT.GET.LED.LOG.VALUE
 SUBROUTINE (VAL,ATTB)
 OID = FIELD(@ID,'.',1)
 GN = DCOUNT(@ID,'.')
This subroutine requires the attribute number from the LEDGER.LOG file you want to pull back.
This subroutine works from the AR or the ORDER.QUEUE file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 255

DICT.GET.LEDGER
 SUBROUTINE (VAL,OID,GEN,ATTB)
This routine is used from the AR file to return data from the LEDGER file. The order id and
generation need to be passed in as well as the attribute number from the ledger file that you want
to return. There are some other ATTB types that can be entered in lieu of an attribute number to
pull back line item information.

 LI.SQTY = Line item ship quantity
 LI.OQTY = Line item order quantity
 LI.DESC = Line item description
 LI.CT = the total number of line items on the generation for the AR record
 LI.PRCLN = line item price line
 LI.PRCEXT = Line item ship quantity extended price.
 LI.UNIT = Line item unit price
 LI.CSTEXT = Line item ship quantity extended cost of goods sold cost
 LI.COMEXT = Line item ship quantity extended commission cost.
 LI.TYPE = line item product type
 LI.PN = Line item internal id number
 LI.DMD = Line item monthly demand
 LI.ONHAND = Line item on-hand value

DICT.GET.LEDGER.AMT
SUBROUTINE (AMT,SP.ID,MULT)
 Standard posting ids from the ledger file. This can work from the AR
 Pass in the Standard posting id and the dollar value posted will appear. This will also
want to know what multi-value you want.

DICT.GET.LEDGER.AMT.PQ
SUBROUTINE (AMT,SP.ID)
 This routine will pull back all of the postings to a standard posting you identify. This
subroutine works from the PRINT.QUEUE file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 256

DICT.GET.LEDGER.BASE
 SUBROUTINE (VAL)
--*
This is a dictionary routine that is designed to find the value of a particular basis from the price
sheet based on the branch, date, and basis that is passed in through a common dictionary array
for each item found for specific orders within the ORDER.QUEUE file
--*

 BRS = DICT.COMMON<1>
 DT = DICT.COMMON<4>
 BASIS = DICT.COMMON<7>
 IF DT = '' THEN DT=DATE()

DICT.GET.LEDGER.DET.VALUE
 SUBROUTINE (VAL,OID,LDID,GID,ATTB)

 Get a ledger detail value from the LEDGER.DET file. If Generation ID (GID) is null it will just
get the entire value (attribute number)... GID can be the INVN (LENGTH = 3) or the Generation
ID (LENGTH = 4)

This subroutine can work from the ORDER.QUEUE, and the PSUB file.

DICT.GET.LEDGER.FGHT
SUBROUTINE (VAL,OID,INVN,ATTB)
 Returns the freight associated with the invoice.
 Must pass in the attribute. (36)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 257

DICT.GET.LEDGER.LOG
SUBROUTINE (VAL,ATTB)
 This will return information from the LEDGER.LOG file and can be used from the AR
and the ORDER.QUEUE file

DICT.GET.LEDGER.VALUE
SUBROUTINE (VAL,ATTB)
This dictionary works from the PSUB, LEDGER, AR or the ORDER.QUEUE file. Specify the
attribute number from the LEDGER file that you want to pass back. The attribute can also be a
code to pull back different information.

• LI.PN will pull back the Line Item Part number.
• LI.SQTY will pull back the line item ship quantity
• LI.SQTY.PER will pull back the uom for the ship quantity.
• LI.OQTY pulls back the line item open quantity
• LI.OQTY.PER pulls back the uom for the open quantity.
• LI.DESC pulls back the description of the line item.
• LI.ENT# pulls back the customer part number (if customers are assigned part numbers in

the customer/vendor part number screen)
• LI.PRCLN pulls back the price line for the item on the order.
• LI.PRCEXT pulls back the extended price for the item on the order
• LI.UNIT pulls back the unit price for the item on the order
• LI.CSTEXT pulls back the extended cost of the item
• LI.COMEXT pulls back the unit cost of the item
• LI.TYPE pulls back the sales quantity type such as tag, defective, etc.
• LI.ONHAND pulls back the product’s on-hand quantity.
• LI.ONHAND.PER will display the unit of measure for the on-hand quantity.
• LI.PN.STK.FLAG displays the branches stk flag from the Primary inventory

maintenance screen. (- = “”; 1 = Y ; 0 = N)
• LI.PN.BUY.ID displays the user id of the buyer for the items on the transaction
• LI.ONPO displays quantity on a purchase order for the line item..
• LI.ONPO.DT displays the expected receiving date of the purchase order
• LI.ONPO.PER displays the unit of measure for the quantity on order from the po.
• LI.ON.XFER displays the quantity on a transfer.
• LI.ON.XFER.PER displays the unit of measure for the quantity on transfer
• LI.TAGDT displays the date the tagged purchase order or transfer is expected to be

received in.
• TV.NAME pulls back the full name of the writer of the transaction
• TV.BFLW.DT pulls back the bid follow-up date for the transaction.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 258

DICT.GET.LEDGER.VALUE.PQ
Similar to the previous subroutine, this one can only be used from the PRINT.QUEUE file.
Enter the attribute number from the LEDGER file you wish to pull back or use one of the
following codes instead:

• LI.SQTY = line item sales quantity
• LI.OQTY = line item open quantity
• LI.DESC = line item description
• LI.PRCLN = line item price line
• LI.PRCEXT = line item extended price
• LI.CSTEXT = line item extended cost of good sold cost
• LI.COMEXT = line item extended commission cost
• LI.TYPE = line item sales quantity type
• LI.PN = line item part number
• LI.DMD = line item monthly demand
• LI.ONHAND = line item on-hand
• TV.NAME = Full name of the writer
• TV.BFLW.DT = bid follow-up date

DICT.GET.MATRIX.DATES.VAL
SUBROUTINE (VAL,ATTR)
This dictionary can only be used from the Matrix Dates file. It returns an attribute number you
specify.

DICT.GET.MATRIX.VAL
SUBROUTINE (VAL,ATTR,MVAL)
This subroutine is used in the matrix file and will return the attribute number and multi-valued
position you specify.
In the ATTR argument you can also pass in the following codes:

• ALPHA
• SLSM
• SLSM.IN
• NAME
• INDEX
• MISC.WORK
• MISC.WORK,CUST.NAME

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 259

• DATES
• TYPE
• ABBR
• BRANCH

DICT.GET.MISC.DATA.VAL
SUBROUTINE (VAL,KEY,ATTR,MVAL,SVAL)
This subroutine will pull back the attribute, multi-value and sub-value from the MISC.DATA
file. You are required to specify the key to the record for which you need to extract data.

 DICT.GET.ML.CUR.VAL
SUBROUTINE (VAL,REC.ID)
Returns the current MAINT.LOG value

DICT.GET.NO.LOCS
SUBROUTINE (VALS)
This subroutine works from the PRODUCT, or PRODUCT.NOTES file and will display
products that do not have a bin location in a branch. The prompt hotkey in dictionary
maintenance must prompt for a branch.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 260

DICT.GET.PRD.XFER.HITS
SUBROUTINE (VAL, PN, OPT)
This is a custom routine which will loop through all of the brs for a start and end date and add up
the number of hits for xfers... This subroutine needs to have the internal ID of the Product.
Therefore it can only be run from the PRODUCT, PRODUCT.NOTES and PROD.DYNAM
files where the key is the Product’s internal ID number. You can fill in either option 1 or 2.
Option 1 = Hits and Option 2 = Qty
 VAL = ''
 BRCHS = DICT.COMMON<1>
 ST.DT = DICT.COMMON<3>+0
 END.DT = DICT.COMMON<4>

DICT.GET.PREV.CNT
This subroutine is run from the product file and will return the previous on-hand

DICT.GET.PREV.ONHAND
This subroutine will return the on-hand value for a product for a given date. This subroutine calls
in another subroutine called GET.PREV.ONHANDS. This routine works from the Product File,
Prod.dynam file as well as the product.notes file.
The prompts need to be as of date and Branch/Tr/All

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 261

DICT.GET.PREV.ONHAND.TYP
 SUBROUTINE (TOT.QOH,QTYPES,NEG,INPROCESS)

* Subroutine: DICT.GET.PREV.ONHAND.TYP
When using this subroutine you need to supply what types of location (listed below), whether to
include negative quantities as well as in-process quantities.
--
* Calc ONHAND for branches & as of date in DICT.COMMON
--
* TOT.QOH - Total quantity on-hand for location types
* QTYPES - Types of location
* NEG - Include negative quantities
* INPROCESS - Include in-process quantities
--
* QTYPES:
* S - Stock
* T - Tagged
* F - DeFective
* R - Review
* O - Overstock
* L - DispLay
* C - Consignment
* NEG & INPROCESS:
* O - Only
* E - Exclude

• null for include

DICT.GET.PREV.ONHANDS
SUBROUTINE (OH,PN)
This routine can be called from anywhere rather than just the PRODUCT file to get previous on-
hands - Pass the eclipse PN in the PN field. It will get the branches and effective dates from
common and pass back the on-hand in OH variable...

DICT.GET.PRNK
SUBROUTINE (RANK,PN,BR)
This routine can be used to pull back the Rank of an item in a branch. The product’s internal ID
needs to be passed in, so this can be used from any file where you have this information to pass
into the subroutine.
You also need to pass in the Branch number you are looking to retrieve the rank for, otherwise
the system will pull back branch 1’s rank.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 262

DICT.GET.PROD.INFO
 SUBROUTINE (VAL,PN,OPT)
 Version# 1 - 03/24/1996 - 08:31pm - SCOTTR - **
 VAL = ''
 BRS = DICT.COMMON<1>
 BRN = DCOUNT(BRS,VM)
 SD = DICT.COMMON<3>
 ED = DICT.COMMON<4>
You must supply the part number in question and the option to pull back
AVEQOH = Average quantity on-hand
SLS = sales quantity
SLS$ = Sales dollars
COGS = Cost of goods sold

DICT.GET.PUD
Routine to get attb 5 of PU.IDX file and wrap to 35 characters
When you do an auto price update the description is written to the pu.idx file and is stored in
attribute 5. This subroutine is used to display the auto price update description instead of the
product’s description in the product file.

DICT.GET.RANK
SUBROUTINE (RANK,CN)
This routine pulls back the customer’s rank. This routine can be run from any file where you can
pass in the key to the ENTITY file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 263

DICT.GET.VAL
SUBROUTINE (ANS,FILENAME,ID,ATTR,VAL,SVAL)
This subroutine can be used from any file. Pass in the filename, the key, attribute number, value
and sub-value you want to pass back.

DICT.GLOBAL.RANK.GET
 SUBROUTINE (RANK,VAL)

 This routine returns the rank at sub-value (VAL) for a given product.

 VAL - Subvalue mark [IN]
 RANK - Value returned [OUT]

 Common Variables - None used in this subroutine.

DICT.JOB.TRACKING.GET.CMT
If you are running a report from the TRACKING.LOG file, this dictionary will return the
comments back on a report.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 264

DICT.LAST.CYCLE.COUNT
 SUBROUTINE (LAST.CYCLE.COUNT)
 BR = DICT.COMMON<10>
 START.DT = DICT.COMMON<3>
 END.DT = DATE()

This dictionary will return the last time a product was cycle counted. The branch prompt must
be the Enter Br: not the Branch/Tr/All prompt to work.

DICT.LED.LF.GET
I believe this counts the number of products on a transaction when you are writing a report off of
the ORDER.QUEUE file.

DICT.LED.WEIGHT.GET
I believe this retrieves the Weight of a transaction from the LEDGER file when you are writing a
dictionary from the ORDER.QUEUE file.

DICT.LEDL.INFO
 SUBROUTINE (VAL,ID,WORD)

 Set WORD to Printed or Overcommit etc
This subroutine works from files that have the Order number somewhere in the @ID. Provide
the subroutine with a word from the change log of the transaction and it will return the date,
time, user who did the activity.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 265

DICT.MATRIX.PROD.DESC
If the matrix cell is product specific, this subroutine will pull back the description of the product
from the product file.

DICT.MATRIX.PROD.LINE
This subroutine will pull back the product’s price line.

DICT.MV.CONV
 SUBROUTINE (VAL,ATTR)
--*

• This routine will convert VM to spaces in dictionary items. Currently being used in SQL
data warehouse product

DICT.ORD.PT.GET
This routine is used in the PRODUCT file or any file where the @id is the PN. Subroutine to
retrieve the order point value for a product
 SUBROUTINE (OPS)
 IS.WHSE = 1
 BRS = DICT.COMMON<1>
 OPS = ''
 MATREAD PRD FROM PRDFILE,@ID ELSE MAT PRD=''
 PN = @ID

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 266

DICT.ORD.QUE.CUSNAME
This subroutine will pull back the customer’s name when used on the ORDER.QUEUE file.

DICT.PAY.AMT.GET
 SUBROUTINE (AMT)

 BEG.DT = DICT.COMMON<3>
 ASOF = DICT.COMMON<4>
This subroutine works from the ENTITY file and will show the amount the customer owes
during the start and end date specified.

DICT.PQ.HNDL.FGHT
 SUBROUTINE (AMT,TYPE)
--
* This routine retrieves the various Freight and Handling amounts for and order in
PRINT.QUEUE
--
* AMT (OUT) - The Freight or Handling amount specified by TYPE
* TYPE (IN) - A string telling this routine what type of total to
* return.
--
* COMMON VARIABLES
* @ID is used but not changed
The different types you can pull back are the following:
FGHT.IN.BILL
FGHT.OUT.BILL
FGHT.IN.EXPENSE
FGHT.OUT.EXPENSE
HNDL.IN.BILL
HNDL.OUT.BILL
HNDL.IN.EXPENSE
HNDL.OUT.EXPENSE

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 267

DICT.PRD.ATTR
Retrieves the attributes from the PROD.BR file.

DICT.PRD.AVG.PRC
 SUBROUTINE (AVG.PRC)
*** SUBROUTINE - DICT.PRD.AVR.PRC
*---
*** This routine calculates the Average Selling Price for the Product whose PN is @ID based on
the Branches, Start Date and End Date specified through SET.COMMON at TCL.
*---
*** AVG.PRC (OUT) - The Average Selling Prices (VM by Branch)

DICT.PRD.AVGSALE
This subroutine will pull back the average sale quantity from the branch specific data.

DICT.PRD.BABY.SURPLUS.PT
Subroutine: DICT.PRD.BABY.SURPLUS.PT
---*
 This routine is an I-descriptor for the PRODUCT FILE to calculate the surplus point for a baby
branch. It uses the mother branches line point days * the baby branches demand/day + the baby
branches economic order quantity. This is very similar to DICT.PRD.SURPLUS.PT except for
the calculation on the baby branches, they use the baby’s line point day.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 268

DICT.PRD.CMP.COST
 SUBROUTINE (REPLCOST)
--
Routine to display kit item component costs
--
 Variables:
 REPLCOST - Individual component cost (Out)

DICT.PRD.CMP.DESC
This subroutine will display the description of the components of a kit item.

DICT.PRD.CMP.LIST
This routine will display the list price of the components of a kit item.

DICT.PRD.COSTS
 SUBROUTINE (COSTS,ATTR)
Subroutine: DICT.PRD.COSTS

 Program is passed a value and pulls this attribute position from the PROD.CALC.BR file which
contains all calculated product information and then returns the result.

 COSTS - Result from what is stored PROD.CALC.BR at position ATTR [OUT]
 ATTR - Attribute Position [IN]

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 269

DICT.PRD.CUS.ORDERS
 SUBROUTINE (ORDATA,VAL,PN,CN)
 **
 * VAL = 1 ; Open Order ID's *
 * VAL = 2 ; Required Date *
 * VAL = 3 ; Qty pending shipment *
 * VAL = 4 ; First line of product desc *
 * VAL = 5 ; Ship Date *
 **
If you can pass in the @Id of the product file and the @id of the customer, you can return any of
the above value numbers.

DICT.PRD.CUS.SALES
 SUBROUTINE (QTY,RANGE,ATTR,SD,ED,PN,CN)

--------ATTR Definition
 3 = Sales
 4 = Purchases
 5 = Transfers
 6 = Sales $
 7 = Purch $
 8 = Xfer $
 9 = Sales COGS $
 10 = Sales GP $
 11 = Sales GP %

--------Range Definition
 1 = User Defined
 2 = MTD
 3 = YTD
 4 = Fiscal MTD
 5 = Fiscal YTD

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 270

DICT.PRD.CUS.SLS
 SUBROUTINE (QTY,PN,CN,MODE,ATTR)

 BR = DICT.COMMON<1>
 SD = DICT.COMMON<3>
 ED = DICT.COMMON<4>

This routine is used to get the number of sales of a specific PN during a given period. By
sending in a CN, the programmer is saying they want to know what the sales data for the PN
were for that CN. If there is no CN, the programmer just wants to know in general how many
sales were made for that PN in general. There is also new functionality so that if you send this
routine null BRS, then it assumes you want to know what happened across all pricing branches.

The ATTR parameter informs the subroutine about what aspect of the sales data you are looking
for... The table is as follows:
THIS ROUTINE RETURNS SALES DATA FOR PRICE BRANCH, NOT SHIP BRANCH
ATTR Definition
2 = Transaction Count
3 = Sales
4 = Purchases
5 = Transfers
6 = Sales $
7 = Purch $
8 = Xfer $
9 = Sales COGS $
10 = Sales GP $
11 = Sales GP %
--
 PN - The PN that we are interested in... (IN)
 BRS - The Pricing branches we are interested in... If
 null, then want data for ALL pricing branches. (IN)
 RANGE - Ummm... I'll have to get back to you on that.. (IN)
 ATTR - The integer trigger that let's the routine know
 which specific totals you're interested in. (IN)
 SD - The start date of the date range. (IN)
 ED - The end date of the date range. (May be null.) (IN)
 QTY - The summation of the data that you're looking for. (OUT)
 CN - The CN that you are looking for summary data for this PN. (May be null.) (IN)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 271

DICT.PRD.EOQ
This routine only works from a file where the Product ID is the key to each record and will pull
back the EOQ per branch.

DICT.PRD.GET.INFO
SUBROUTINE (VAL,OPT,TYPE)

Works from the PRODUCT file.

The options you can choose are:
LP = Line Point
OP = Order Point
XFER.PT = Transfer Point
DMD = Demand
The different types can be:
WBRS = Warehouse branch
PBRS = Purchasing Branch

DICT.PRD.GET.PER
 SUBROUTINE (PER.QTY,MODE)
 PN = @ID
Subroutine: which calls in another subroutine called DFLT.PER.GET
This returns the correct UoM type and quantity for the given mode.

MODE - UoM mode - S,P,T,A,I (IN)
DFLT.PER - UoM quantity for this mode (OUT)
DFLT.ALPHA - UoM alpha code (OUT)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 272

DICT.PRD.HITS
This routine will find the number of hits calculated using the PSUB file.

DICT.PRD.INV.MAINT
SUBROUTINE (VALU,OPTN)
This routine calls in the DFLT.PER.GET routine for “P” type (purchasing branch information)

DICT.PRD.LASTACT
This subroutine will look through the PSUB file of the selling branch to display the last activity
date of a product.

DICT.PRD.LASTSALE
This routine will look through the PSUB file for the selling branch to display the last sales order
for an item.

DICT.PRD.LASTSALE.PN
SUBROUTINE (LASTSALE,PN,CN)
This routine allows you to pass in the internal id of the product and the internal id of a customer
to find the last sales transaction for the customer for the item.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 273

DICT.PRD.LEADDAYS
This routine will obtain the product lead time, however it uses the user’s home branch to give a
better estimate of the lead time that is needed.

DICT.PRD.LOCS
 SUBROUTINE (VAL,OPT,LOCN)

 ** OPT = -1: All Loc info if qty # 0
 ** OPT = 0 ; All Location info
 ** OPT = 1 ; Location Types
 ** OPT = 2 ; Location Codes
 ** OPT = 3 ; Location Tag
You need to pass in the location that you want to display the information. The options above
will determine the information for the location you want to pass back.

DICT.PRD.OH.DS
 SUBROUTINE (ANS,DAYS.SUP)
Routine will display a Yes or a No. If the on-hand is less than the days supplied then the answer
will be yes otherwise, no.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 274

DICT.PRD.ON.BID
This routine will display the bid(s) a product is on.

DICT.PRD.ONHAND
 SUBROUTINE (ONH,TYPE)
 **
 ** Type : 1 = Total
 ** 2 = Stock
 ** 3 = Tagged
 ** 4 = Other
 ** 5 = All
 **
 * This gets called from PSUB I-Descriptors sometimes, too.
 * So, @ID could be a PSUB ID, not a part number. Either way, this step will yield a PN
from whatever was passed in.

DICT.PRD.ONHAND.LOC
This routine will provide the on-hand value for each location.

DICT.PRD.ONHAND.PN
 SUBROUTINE (ONH,TYPE,PN)
 **
 ** Type : 1 = Total
 ** 2 = Stock
 ** 3 = Tagged
 **
This routine allows you to pass in the part number. It will display the on-hand value for any of
the types specified above.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 275

DICT.PRD.ONHAND.VAL
 SUBROUTINE (VAL,TYP)
 BRS = SEL.BR
 PN = @ID
TYP = 1 ; * Stock On-Hand
TYP = 2 ; * Tagged On-hand
TYP = 3 ; * Stock Committed
TYP = 4 ; * Tagged Committed
TYP = 5 ; * Stock In PO
TYP = 6 ; * Tagged In PO
TYP = 7 ; * Stock In Transfer
TYP = 8 ; * Tagged In Transfer

DICT.PRD.ONPO
This routine will work from any file where the product id is the key to the record and will pull
back the quantity on an open purchase order for the shipping branch.

DICT.PRD.ONWORK
 SUBROUTINE (ONWORK)
--
* Returns the on work order quantity.
This routine works the same as the ONPO dictionary listed above. Any file for which the
internal id is the product id will display the quantity on a Work Order for the shipping branch.

DICT.PRD.OPEN.ORD
 SUBROUTINE (ORDATA,VAL)
--*
* ORDATA - The order information for the product (OUT)
* VAL - The type of information you want passed back in ORDATA (IN)
* NOTE : You must have a prompt on the dict that calls this for BRANCH

* Valid entries for "VAL" :
* VAL = 1 - Open Order ID's
* VAL = 2 - Required Date
* VAL = LD# - Ledger detail information from the attb specified by #
* VAL = LED# - Ledger information from the attb specified by #

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 276

* VAL = STNAME - Shipto Name from the ENTITY in LED(5)<1,GEN>
* VAL = BTNAME - Billto Name from the ENTITY in LED(1)<1,GEN>

DICT.PRD.OPEN.PO
 SUBROUTINE (ORDATA,VAL,PN)
 **
 * VAL = 1 ; Open Order ID's *
 * VAL = 2 ; Required Date *
 * VAL = 3 ; Qty pending receipt *
 * VAL = 4 ; Receive Date *
 **
You can pass in the part number and specify the value you want to return with this routine.

DICT.PRD.ORD.PT
 SUBROUTINE (VAL)
--
This subroutine returns a VM list of order points for the branches in BR$. The Network type to
use for the order points is retrieved from the generic dict common prompt. This solves the
problem of having to have three different order point dictionaries for the different purchasing
network types.
--
* COMMONS:

• DICT.COMMON - Read from - BR$ will get populated if empty.

DICT.PRD.PIL
This routine works from a file for which the product id is the key to the records and will display
the product’s projected inventory level.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 277

DICT.PRD.PIL.NO.XFER
 SUBROUTINE (PIL,PL.DAYS)
Subroutine - DICT.PRD.PIL.NO.XFER

 This Subroutine is used by the "PIL.NO.XFER" Dictionary Item off the Product File. It will get
the Projected Inventory Levels for a Product at each of the Branches set in the COMMON
Variable 'SEL.BR'. If SEL.BR is not set, the User's authorized Branches will be used instead.
For 'Mommy' Branches, the PIL does not include products that will be transferred to Baby
Branches.

 PIL - Projected Inventory Level, VM delimited by Branch (OUT)
 PL.DAYS - (Not Used)

DICT.PRD.PIL<10DS
From the PRODUCT file or any file that has the Internal product ID as the key to the record, this
routine checks to see if the projected inventory levels are less than 10 days supply. If so, it will
return a Yes.

DICT.PRD.PRICE
 SUBROUTINE (VALU,ATTR)

From the PRODUCT file this Subroutine returns the active UOM or Per qty, current for the
AS.OF.DATE in DICT.COMMON<4>, or if not set, the current date.

 VALU - The value returned - either UOM or Per Qty (OUT)
 ATTR - The attribute you want the value for - either 2 - UOM (IN)

 or 3 - Per Qty

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 278

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 279

DICT.PRD.SALES
 SUBROUTINE (QTY,RANGE,ATTR,SD,ED,INC.DIR,SLS.UM)
For this routine to work you need to pass in the attribute definition and the range definition.
--------ATTR Definition
 3 = Sales Qtys
 4 = Purchases Qtys
 5 = Transfers Qtys
 6 = Sales $
 7 = Purch $
 8 = Xfer $
 9 = Sales COGS$
 10 = Sales GP$
 11 = Sales GP%
 12 = Work Order Qtys
 13 = Rental Qtys
 14 = Work Order $
 15 = Rental $

--------Range Definition
 1 = User Defined
 2 = MTD
 3 = YTD
 4 = Fiscal MTD
 5 = Fiscal YTD

DICT.PRD.SGRP.BR
 SUBROUTINE (SGRPS)

• This program returns all the sell groups a product is in for the branch designated.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 280

DICT.PRD.SHORT.COMM
 SUBROUTINE (SHORT.COMM)

 Returns the Short Commodity Code that corresponds to the product's
 Commodity Code in the Valid Product Commodity Codes control record.

DICT.PRD.SLS
This routine will pull back the product sales using the PSUB file. You can only use this
subroutine from the Product File or a file for which the Product ID is the @id.

DICT.PRD.STK
 SUBROUTINE (STKS)
--
 Checks the status of a product in all branches in SEL.BR and returns 1 (YES) if stock and 0
(NO) if not if multiple branches are selected, a multi-value string is returned. It uses the standard
formula which includes implied stock YES/NO logic.
 If no branches are selected, all authorized branches are used.
--
 STKS - VM list of stock flags for each BR in SEL.BR.(BOOLEAN) [OUT]

DICT.PRD.SUB.DESC
This routine will display the description of the substitute items a product is linked to.

DICT.PRD.SURPLUS
From the PRODUCT file or any file that the internal id is the product internal id, this routine will
pull back the surplus amount.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 281

DICT.PRD.SURPLUS.NOXF$
 SUBROUTINE (SURPLUS$,BASIS)
--
 This routine will get the value of a product's surplus, using the
 Basis passed in.
--
 Parameters:
 SURPLUS$ - Value of a product's surplus, Value Mark delimited by Branch.
 BASIS - Basis to use when getting Base Price of a product.

DICT.PRD.SURPLUS.PT
This routine displays the surplus point. This routine can only be used from a file where the @ID
is the internal id of the product.

DICT.PRD.UOM.MULTI
 SUBROUTINE (VAL)
--
 This program is used to report qty concatenated to unit of measure written for report writer use.
--
 VAL - Multi-value list of qty: unit of measure (OUT)
 DICT.COMMON is loaded when report writer runs. We are using
 fld 2 from dict value with is the mv postion for data.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 282

DICT.PRD.UOM.QTY
This routine counts how many unit of measures are assigned to an item.

DICT.PRDC.BR.GET.VAL
 SUBROUTINE (VALUE,PN,ATTB.NO,SUM.TERRS)
--
 This routine is for getting a value from the PRDC.BR file from
 I-Descriptors in PRODUCT dictionaries
--
 VALUE - This is the value requested (OUT)
 PN - This is the part number that the value is being
 - requested for [IN]
 ATTB.NO - This is the value being requested [IN]
 SUM.TERRS - This is a flag whether to sum to sum the values (IN)
 - for the brs in a territory if a territory is
 - included in the br list to get values for
--
 Common Variables: DICT.COMMON<2> is used to get the branch(s) that the value is being
requested for

DICT.PRDD.BR.GET.VAL
This dictionary is used in the product file to go out to the PROD.DYNAM file to pull back the
branch specific date. The Prompt that you need on your dictionary for this to work is the Enter
Br prompt, NOT the Enter Br/Tr/All.

You need the subroutine to call in the PN and the attribute number that you want to pull back.
Example: Attribute 12 is the date the item was last counted.

 SUBROUTINE (VAL, PN, ATTB)
*--
*** This routine is used as a wrapper for the dictionary to get values for the dictionary from the
branch specific product array given the id and the attribute.
*--
*** Parameters:
*** VAL - The value to return.
*** PN - The ID to get the VAL from
*** ATTB - The ATTB # that the user is wanting a value for.
*--
*** COMMON VARIABLES:
*** DICT.COMMON<10> - This is used to get the value for the branch

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 283

DICT.PRDD.GET.BR.LOC.VAL
 SUBROUTINE (VAL,PN,ATTB)
 VAL = ''
 VAL.CT = 0
 SLOC = DICT.COMMON<6>
This routine will pull back branch specific data relative to the product dynam file.
If you are using this subroutine in a file where the PN is accessible, you must pass that
information. Then specify the attribute number you need to pull back.

DICT.PRDD.GET.BR.VAL
 SUBROUTINE (VAL,PN,ATTB,BR,SVM.NO)
Pass in the Part number, attribute from the prod.dynam file you want, branch you are in and the
sub-value number.

DICT.PRICE.CLASS
 SUBROUTINE (SELL.PRC)
--
 This subroutine tries to get a Price for a Product and Class, and is used by the PRICE.CLASS I-
Descriptor off the Product File.

DICT.PRICE.PER
SUBROUTINE (PER.QTY,PN)
This routine will display the price per the unit of measure listed on the items price sheet. You
can pass in the PN on the arguments.

DICT.PROD.STATUS
This routine will display the description of the product status

DICT.PROD.WGHT
SUBROUTINE (UNIT.WGHT,PN,PER)

DICT.PRODUCT.LOAD.KEY.ALT
 SUBROUTINE (FLNM,REC.ID,RPL.STR,UPD.ERR,PASSER)

This routine will load the first n words of the Product description to the Product Keywords and
Alt Desc fields.

 NOTE: Designed for (S)et option only.
 Format of RPL.STR - "W#" or "#" where # is the number of words
 to be taken from the front of the description field.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 284

 FLNM - File that we are updating
 REC.ID - Record ID that needs updated
 RPL.STR - Description after update
 UPD.ERR - 1 - File not found
 2 - Record not found
 PASSER - Reserved for future use

DICT.PRODUCT.UPD.DESC
 SUBROUTINE (FLNM,REC.ID,RPL.STR,UPD.ERR,PASSER)

This routine will update the description in the Product File.
It is used with the replacement string all in double quotes and Designed for (S)et option only.

Opt1 - "W3,[WHITE]=[WHT] ... starts with the 3rd word in first value of description, and then
moves everything from the 3rd word on in the 1st value along with the remaining values to the
conversion of WHITE to WHT. Truncating 1st value before Word 3 and putting conv the
following value positions.

 Opt2 - "[WHITE]=[WHT]" ... does not touch 1st value position.
 The remaining values are checked and all occurrences of the word
 WHITE is exchanged for WHT.
--
 FLNM = File that we are updating
 REC.ID = Record ID that needs updated
 RPL.STR = Description after update
 UPD.ERR = 1 - File not found
 2 - Record not found
 PASSER = Reserved for future use

DICT.PSUB.CALC.PRICE
This routine will calculate the best price when using this from the PSUB file. Looks like a way
to compare the calculated price with an overridden price.

DICT.PSUB.COST
 SUBROUTINE (VAL,OID,INVN,LDID,BASE)

Subroutine to be used in I-type dictionaries to return the cost of a transaction from the LD array
associated to the LEDGER. This was written to be used on the PSUB file.

 VAL - [OUT] - Cost determined by program using BASE number.
 OID - [IN] - Ledger record ID (key)
 INVN - [IN] - Invoice number
 LDID - [IN] - Line item number
 BASE - [IN] - Which field in the LD array to get the cost from.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 285

DICT.PSUB.LEDL.INFO
SUBROUTINE (VAL,PSUB.ID,WORD)
This routine will go out to the Ledger log and pull back occurrences you specify. You must
enter the word to search on.

DICT.PSUB.PRT.STAT
Display the print status of a transaction. This routine works from the PSUB file.

DICT.TAG.GET.VAL
 SUBROUTINE (VAL,ATTB)
This routine is used to pull back the tagged information on the PSUB file.

DICT.TRANS.BR
 SUBROUTINE (VAL,FLNM,REC.ID,DICT.ID,TERR.POS)

DICT.VEN.NOTES
SUBROUTINE (NTS,NOTE.ID)
This routine will pull back the vendor notes from the ENTITY.NOTES file. Supply the Note id
you want to display.

DICT.WHSE.OP.QUEUE.IMREPL
 SUBROUTINE (VALUE,COMPLETED)
-------------------------Program Description-----------------------
 This routine can be used by dictionaries on the WHSE.OP.QUEUE file
 in order to select replenishments assigned to a particular user.
-------------------------Parameter Definition----------------------
 VALUE - The value of the dictionary for the current (OUT)
 - record.
 COMPLETED - Boolean, whether or not completed replenishment (IN)
 - should be included.

DICT.X.AXIS.DESC
This routine will display the description of the X axis from your matrix file.
Customer, Customer Type, Class, Quote etc.

DICT.Y.AXIS.DESC
This routine will display the description of the Y axis from your matrix file. Group or Product.

DICT.Z.AXIS.DESC
This routine will display the Z axis, such as territory and branch specific information.

DICT.ZERO.HISTORY
Used on the product file, this routine will display a “1” if a product does not have any history for
a branch defined.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 286

DICT.ZERO.ONHAND
Used on the product file, this routine will display a “1” if a product does not have an on-hand for
a branch defined.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 287

DICT.ZERO.ORDERS
Used on the product file, this routine will display a “1” if a product does not have any open
orders for a branch defined.

