Lesson 1

Introduction to Programmers

(eclipse

Objectives

When you complete this lesson you will know the Eclipse:

Vision
Products
Company

[
[]
[]
® Programming Environment

Page 1 Eclipse — Copyright — June, 2001

Introduction
Eclipse

Eclipse represents a revolutionary advance in distribution management software.
The Eclipse system was designed to put wholesalers in total control of their
distribution operations.

Our Company

Eclipse Inc. was incorporated in 1991. The corporate headquarters are located in
Shelton, Connecticut, with a customer support center in West Yarmouth,
Massachusetts. Boulder, Colorado, is home for the Research and Development,
Quality Assurance, Documentation, and Marketing departments.

Six veterans of the hard good distribution industry developed the Eclipse system.
Their software savvy and knowledge of the warehousing business led them to
create an innovative system—the first real-time, PC-based system for wholesale
distribution management. The Eclipse system was designed to put wholesalers in
total control of their distribution operations.

Our Product

The Eclipse Distribution Management System completely automates every facet
of wholesale distribution: sales, inventory management and forecasting,
purchasing, accounting, and much more. Wholesalers become more productive,
and can plan ahead. Real-time processing means Eclipse users always have
accurate, up-to-the-minute inventory, sales, and order information. Instant system-
wide updating empowers sales staff and warehouse workers, while at the same
time automating business management tasks.

Today Eclipse, Inc. is a leading provider of enterprise software for end-to-end
supply chain management. Since 1992, Eclipse has enabled hundreds of
distributors across the United States, Canada, and Mexico to improve their
business efficiency by streamlining several traditional distribution processes.
Eclipse has established itself as a leader in several market segments including
Plumbing, HVAC, PVF, Electrical, Building Materials, Industrial, Paper and
other durable goods supply industries.

From Palm-based, wireless solutions to Internet-centric applications for
collaborative eBusiness, Eclipse can help its customers achieve a true,
competitive advantage. Integrated business applications including Sales
Management, Inventory Management, Finance & Accounting, Business
Intelligence and Warehouse Automation are among the essential elements that
leverage the business rules set forth by the Eclipse Application Framework.
Collectively, these components work together to help optimize the flow of
information throughout the supply chain.

In FY 1999, Eclipse experienced 80% year-over-year revenue growth, spurred on
by a record number of new installations. Today, with over 185 employees, Eclipse
is one of the fastest growing private companies in the computer software industry.

Eclipse Programmers’ Manual Page 2

Our Vision

Eclipse has developed a business vision that focuses on empowering customers
through the use of great software. As part of this vision, Eclipse intends to:

¢ Develop innovative new solutions through the integration of current and
emerging technologies;

e Hire, train and retain outstanding professional employees with a broad
understanding of best-practice techniques;

¢ Enhance customer support and product education through the utilization of
emerging technologies;

e Grow market penetration by extending sales and marketing efforts to targeted
verticals within the durable goods.

Integral to the Eclipse vision is a customer-centric business philosophy. By
strategically placing the “needs and wants” of customers as the driving force
behind innovation, Eclipse intends to extend its leadership position as the
dominant supplier of distribution management systems.

Programming Environment

Eclipse is written on top of the IBM database called UniVerse. The native
programming language for UniVerse is UniVerse Basic, which is a form of PICK
Basic. PICK has been around since 1968 and is a very fast, comprehensive
database language. However, to take advantage of new technologies and to stay
on the leading edge of Distribution Management Systems, the founders of Eclipse
wrote a pre-compiler around the UniVerse Basic language. This pre-compiler lets
us, as Eclipse developers, develop in a language we fondly call “Eclipse Basic.”
Along with making developers more efficient, “Eclipse Basic” also allows
windowing, buffered input, and other capabilities. To take advantage of these
additional functionalities, the client must be running the Eclipse terminal emulator
Eterm.

Page 3 Eclipse — Copyright — June, 2001

About this Manual

This manual is organized in a logical progression from the first questions you’ll
need to answer in order to program in Eclipse to advanced programming
techniques and hints. Each lesson covers a different topic and provides multiple
exercises and examples that help teach that topic.

This manual will help experienced PICK developers transition quickly into the
Eclipse environment and will teach new developers with no PICK experience all
they need to know to program the Eclipse DMS. You will also look at many of
the Eclipse programming standards, which all programmers are responsible for
knowing and following.

This manual is intended to be read and absorbed over the course of many weeks.

Lesson Structure

In each lesson you are presented with concepts that relate to the Eclipse language
and the creation of new applications. Each chapter builds on the one before, so it
is imperative that you understand the chapter you’re working on before moving to
the next chapter.

Exercises

Each lesson offers exercises that will help you master the concepts being taught.
You may not need to do every exercise in a chapter in order to master that topic
and are free to move at your own pace through these lessons.

Frequently Asked Questions

Each lesson has a section of frequently asked questions and answers to those
questions.

Assignments

Each lesson will have one or more assignments for you to perform and turn into
your training manager. You may be required to do all or only one of each
assignment. The individual training manager you’re working with will determine
this.

Eclipse Programmers’ Manual Page 4

Conventions

The following conventions are used for presenting information in this manual.

=

o
Tips A tip offers advice on the current topic of discussion and easier ways to

accomplish specific tasks.

Cautions A caution advises you of potential problems related to the current topic
of discussion and gives advice on how to avoid them.

L

T,
G

Notes A note presents interesting, sometimes technical pieces of information
related to the current topic of discussion.

Page 5 Eclipse — Copyright — June, 2001

Code Listings

TYPE - All full code listings will be headed with this tag and then the name of
the code. Note that all programs we write in this manual will start with your
initials (such as, JTS) and then the rest of the code ID.

Program or subroutine listings will be printed in a different font, as shown in the
following example:

SUBROUTINE (PASSER)
*# Version# 90 - 02/23/2001 - 05:33pm - CHRISM - develop

**% Subroutine: CUSTOMER.MAINT

* *

#%* This program allows user to update static information concerning

**% customers (such as "Name" or "Address"). The customer records live in
**% the ENTITY file which is open to the file handle CUSFILE in

*** OPEN.STANDARD.FILES.

* *

##* PASSER<1> - Internal customer ID - If passed in they will only

oAk - be allowed to se/maintain this one record before leaving

o - the routine. If passed in as > we will prompt for the

HkE - customer ID. (IN)

PASSER<2> - view only override (set to YES will force view mode) (IN)
*** PASSER<3> - branch account override - will for CUS(7)<1,4>=YES (IN)

* *

NOTE: everything in passer is optional. If sent in as *” we will

##%* default or prompt the information from the user rather than overriding

* *

22 *#* COMMON VARIABLES USED/SET/CHANGED: CUS, OID.DATAS, ACT.IDS,
USE.ZIP4$

*k

% Fill in the default variables from PASSER (Override Customer ID, View
##% Only Override, and Branch Account Override)

INIT.CN =PASSER<I>

VIEW.ONLY = PASSER<2>

BRCH.ACCT = PASSER<3>

**%* The user is NOT in an activity log at this point so clear out
**% attribute 7 of the common array OID.DATAS$
OLD.DATA$<7>="

Eclipse Programmers’ Manual Page 6

Lesson 2

Eclipse’s Operating System,
UniVerse Database, and Distribution
Management System

(eclipse

Objectives

When you complete this lesson you will understand:

e The Eclipse Distribution Management System
® The UniVerse Database
e The Operating System

Page 7 Eclipse — Copyright — June, 2001

Overview

In this chapter we are going to introduce the three major components of the
Eclipse system. It is important that as a developer at Eclipse you fully understand
the roll of each of the components.

The three layers are:
¢ The Eclipse Distribution Management System
e The UniVerse Database
e The Operating System (AIX, Windows NT, HPUX etc.)

By the end of this chapter it should be clear what role each of the above layers
plays in the Eclipse developer’s life and the differences each layer has from the
next.

Operating System

An operating system is an integrated collection of items that service the
sequencing and processing of programs by a computer. This system can provide
many services such as resource allocation, scheduling, input/output control, and
data management.

The above paragraph briefly describes what an operating system is. So what does
this mean to you? It’s very simple; everything you program within Eclipse (or in
any programming language for that matter) is eventually just turned into a bunch
of commands that the operating system performs. Now that doesn’t mean that our
code is compiled to machine code, because it isn’t. As a programmer at Eclipse
you will rarely need to write an OS command, but it is important that you
understand what the OS is doing for you. The operating system is responsible for
making sure all of our programs run, file updates happen, reads are taken care of,
etc. The operating system for Eclipse can be Windows NT, Windows 2000, AIX,
HPUX, or Solaris. The nice thing about having UniVerse in the Database layer is
that we have very few programs that must be changed when porting onto a
different platform. UniVerse takes care of all this for us.

Eclipse Programmers’ Manual Page 8

Possible Operating Systems

e AIX s an IBM system, based upon a version of UNIX. The most
advantageous aspect of AIX is that it is an open operating system. This means
it adheres to a publicly known and sometimes standard set of interfaces, so
anyone using it can also use any other system that adheres to the standard.
Users can learn a single set of skills and find that they are portable across the
entire industry. AIX is also the operating system for one of the most adopted
and performant server/hardware lines in the industry (the RS6000).

® Solaris is a product created by Sun Microsystems (Famous for the Java
programming language). It is another version of the UNIX standards and is
similar to AIX in many ways.

e HPUX is yet another UNIX-based operating system; Hewlett Packard created
this version for its server line.

e Windows NT 4.0 (Server) and Windows 2000 (Server) are the only two
non-UNIX operating systems Eclipse operates under. For these operating
systems, we do have to make some changes to our code. These changes are
necessary because Microsoft created these Operating systems to a proprietary
standard not compliant with UNIX or any other standards. These operating
systems have the following limitations:

o Many things are nearly impossible to do from the command prompt of
an NT or 2000 server.

o Windows servers are also not nearly as efficient in memory and disk
management as the UNIX platforms mentioned above.

o NT and 2000 server hardware is limited. The UNIX entry and mid-
level servers consistently out perform even the best NT machine ever
made.

Because of these many limitations, Windows NT and 2000 are limited to our
smaller clients who need to keep the hardware cost of Eclipse to a minimum.

Page 9 Eclipse — Copyright — June, 2001

The UniVerse Database
What is a Database?

A database is a collection of related files. A file is a collection of related records.
A record is a collection of fields (attributes). A unique identifier (ID) or Key
identifies each record within the file. In multi-dimensional databases such as
Universe, attributes can also consist of multi-values and values can consist of sub-
values.

Files

Files are collections of logically related items or records. For example, a file
cabinet contains folders, which in turn contain similar types of information. We
all remember in grade school that everything we did (good and bad) was recorded
in our record. Well, I'm sure they had a big filing cabinet filled with all of our
records. At Eclipse, we have files about our customers, the products our customer
sell, and our vendors just to name a few. Each of these files contains records
made up of similar types of information. For example, at Eclipse we have about
400 customers so as you might guess, there are about 400 records in our customer
file, each containing similar types of information. Examples of that information
would be the customer name, address, and phone number.

Records

A record is a collection of logically related attributes or fields. So all of these 400
records in our customer file will contain the name of the customer, address,
contacts, billing information, and other information for that ONE customer. Each
record in the customer file is formatted in the exact same way. A record would be
like a file within a section of the file cabinet. Going back to the grade school
example, each “file” (one per student) would contain our grades, names, mom’s
name, and so on.

Attributes

An attribute is simply a dividing mark between each data element. When you
access the data, you can quickly get to the field of data (attribute) you need. So
the first attribute or field in the customer file might be name, the second; address,
the third; contacts, etc.

Eclipse Programmers’ Manual Page 10

Record ID / Key

Each record in a file must have its own unique identifier. This is called the key to
the record. This key may be any combination of alphabetic, numeric, and most
punctuation characters. At Eclipse we mainly use *.” and ’~’ as punctuation
characters. No spaces are allowed in the key. Because of the uniqueness of the
key, a programmer can pull data very easily from a database to be used in any
program they write. The ID for our grade school records may have been our name
or our social security number.

Exercise 2.1: Creating Database Files

Create your own simple example of multiple records within one file. Using a
simple Microsoft Excel spreadsheet, create a list of all of your relatives, recording
for each person their address, phone number, spouse’s name, and the day they got
married.

1. Open MS Excel.

2. Start a “new” table/spreadsheet called something like “Relative Information.”
This will be the “file name.”

3. Once you’ve created this new table, enter the following column headings:
e Relative Name
e Street Address
e C(City
e State
e Zip Code (Postal Code)
¢ Phone Number
® Spouse’s Name
e Marriage Date

e Relationship to You

o
Tip: If you need help creating this spreadsheet in Excel please see your

training manager on how to get started.

Page 11 Eclipse — Copyright — June, 2001

4. Now that you’ve got the column headings, enter some data. Under the
“Relative Name” fill in two or more of your relatives. Go ahead and fill out all
of the columns for each relative. Remember this doesn’t have to be exact; it’s
just for practice. If you don’t know a piece of information leave it blank or
make it up!

5. Once you have filled in all of the data, save the spreadsheet into your C: drive
and you’re done.

Review

Let’s analyze what you just did.

1. You created a file called “relative information.”

2. The file contained information about each one of your relatives (records).

3. Next you created your columns. These columns represent attributes. Notice
that every record (each relative is one record) has the same attribute
information in the same column. The data within the record itself is not the
same but every relative’s name is in the first column (attribute) of the record
and every relative’s marriage date is in the 8th column (attribute) of the record
and so on.

4. What was the key for each record? Excel automatically generated a unique
key as you added records. What was it? It was the “Line #” on the left hand
side of your screen. That incremental number for each relative you entered
gave those records a unique identifier. So, even if you type the same name on
multiple lines in the Relative Name column, the program (Excel in this case)
sees each line as totally different information.

UniVerse is just the name given to the database Eclipse uses to store data in.
Along with being a database, UniVerse also provides a native programming
language called UniVerse BASIC (just another “flavor” of PICK BASIC). This is
the language we use to program Eclipse. There are many advantages to using a
native programming language when accessing the database. A few of the most
important advantages are:

® Getting data from and to disk is usually a very easy task;

e There are a lot of native query statements that are much more efficient within
the language;

® The programmer can fully utilize all of the databases strong points and stay
away from its weaknesses;

e [tis very easy to create new fields, files, and records in the native language.

Eclipse Programmers’ Manual Page 12

T

{7
A
J
Note: Going back to the introduction, we do have a proprietary pre-compiler
that allows us to write Eclipse Basic, but that code is just turned into native

UniVerse BASIC and compiled using the UniVerse compiler.

PICK BASIC was created back in 1968 as all three BASIC layers: the
programming language, database, AND operating system. This evolved
(although the original PICK Systems company is still around and dying) into
our model with a database provider (Informix, UniVerse and UniData)
integrating the PICK programming language as its native language and
supporting the traditional file structures of PIC, but they are not operating
systems. These databases run on top of other operating systems that handle all
of the commands to the CPU, disk, etc. This gives an advantage in that all you
have to do to port over to other hardware platforms is have a different
compiler to make your code work on that OS.

We will go into much more detail on the UniVerse database in Lesson 4. For now
it is just important that you understand why we have UniVerse along with a
separate operating system running under Eclipse, and what the role of each
system is.

Page 13 Eclipse — Copyright — June, 2001

Eclipse Distribution Management System

Eclipse is a programming application. We write programs using the UniVerse
BASIC language that talks to the UniVerse Database, which in turn has code
(written in C) that talks to the operating system to make all of the commands
happen. So if you think about it, Eclipse has three layers of software:

1. Operating System
2. Database
3. Application

The Eclipse Application is all that truly matters to our end users. The application
is responsible for maintaining all of the files and data, and doing all of the
calculations the customers need to run a successful distribution company. We also
have the entire user interface in this application that draws the screens, asks for
information, and interacts with our end user. This Application is what you’ll be
programming, but you must know how to interact with the Database and OS
layers to be a truly successful programmer in any application.

Eclipse Programmers’ Manual Page 14

Summary

In this chapter you have learned about the three different software layers that
concern us as programmers at Eclipse:

1. Operating System
2. Database
3. Application

You also learned a little bit about how each layer interacts with the layers below
and above it and why Eclipse chose to use a native programming language when
talking to the UniVerse Database.

Finally, we discussed some of the advantages of each operating system Eclipse
uses and did a short exercise (using Microsoft Excel) to understand the
relationship of data within a file in a database.

Page 15 Eclipse — Copyright — June, 2001

Frequently Asked Questions

Question:

Why doesn’t Eclipse just use the old PICK systems approach and use one
operating system and database combined?

Answer:

There are many drawbacks to this old model. The main one being that very few
hardware platforms support the PICK operating system. The nice part about
having a database like UniVerse is that most of the customization you would do to
port onto different platform models is done by them. All databases and products
that run on an OS (or hardware platform) must get “certified” by that
manufacturer, which can take a lot of time and money. For Eclipse we just install
the correct version of UniVerse on that OS and we’re ready to go.

Question:

With all of the more popular databases (like Oracle) in the software industry, why
did Eclipse choose a seemingly smaller and unknown database like UniVerse as
its database provider?

Answer:

Oracle is a very high-end database platform with a very high price point. Oracle
(and almost every other relational database including Access) is also limited to the
2-dimensional approach within a file and its record (like our Excel example). The
file contains records and the records contain data across the columns. The
UniVerse database is very powerful and can easily handle up to 5 and 6
dimensions within each record. Finally, the PICK database (and UniVerse in
particular) is very easy to maintain and optimize. We can easily add fields to files
(tables) without changing the whole file structure and our clients do not need a
full-time DBA to make sure the database is “tuned” and running properly.

Eclipse Programmers’ Manual Page 16

Assignment: Lesson 2

1. On paper, design a file layout that you would recommend as a “contact”
database. It should be designed to store:

¢ First name

e Middle initial

e Lastname

¢ Home phone number
¢ Work phone number
¢ Email address

o Address 1 and 2

e (City
e State
e Zip code.

2. Create this file in Excel.

3. Once you have completed it, email it to your training supervisor.

Page 17 Eclipse — Copyright — June, 2001

Lesson 3

Call Tracking for Programmers
(eclipse

Objectives

When you complete this lesson on the Tracking System, you will be able

to:

Create Trackers

Assign Trackers

View Trackers

Use the Tracker Stopwatch
Append Trackers

Eclipse Programmers’ Manual Page 18

Overview

In this chapter you will learn how to use the Eclipse Call Tracking System. It was
designed for Eclipse employees to track the time spent researching, problem-
solving, programming, testing, and documenting existing and new application
programs.

Programmers, in particular, use the Call Tracking System to track which projects
we have open, how long we expect each project to take, and when we expect to
complete each project. The release control department, which decides what
programs are promoted into each release, also uses this system. We also use this
system for tracking the actual hours spent working on each project.

Consequently, it is very important that all programmers know how to correctly
use the Call Tracking System.

£

A

2§
Note: For a complete explanation of the Call Tracking System, refer to the
Call Tracking System document in the Eclipse Elibrary.

Creating a New Tracker

While it is very rare that a programmer would ever create a new tracker, it is
important that you know the procedures for correctly creating a tracker. The
following example walks you through the steps of creating a new tracker.

Exercise 3.1: Assigning a Tracker to a Customer Account

1. Assign a tracker in Eclipse to a customer account. This is how we know for whom
a programming project is being done.

For Example: When Eclipse receives a call from a customer about a problem
with their system or requesting a custom modification, a tracker is created and
assigned to that customer’s account.

®

Caution: It is very important to assign trackers to the correct account or you
could end up putting code onto a customer system that had no need for that
code.

2. Assign Internal Eclipse trackers to the correct customer “account” or “branch” of
Eclipse from which the tracker is initiated.

e For example, if you as a programmer were actually initiating an internal
tracker you would assign it to the “Eclipse Boulder” customer account,
because you’re located in the Boulder office. However, if someone in the
corporate office were initiating an internal tracker, they would assign it to
the “Eclipse Shelton” customer account, because they’re located in the
Shelton office.

Page 19 Eclipse — Copyright — June, 2001

®

Caution: We should NEVER assign a tracker to a user or vendor account
within Eclipse. This functionality exists only for our customers’ use.

T

[}
Yo
)

Note: An internal tracker is a project or job that needs to be completed for
Eclipse as a company and is in no way affecting or needed on a client’s site.

Exercise 3.2: Creating a New Tracker

1. To display the Call Tracking Entry screen shown below select Customer Activity

Log Entry on the F4-A/R menu or key F4-Y.

Call Tracking Entry

In: _

Customer : Contact

Category : Priority : Hext Action :

Work Area: Ext Status: Final Action:

Sub Area : Int Status: Expected Dt :

Source Sec Level : Delivery Dt :

Uiew Edit ”Lng FInd ”Fnrward" Aippend ”Frint” Cop¥ "EunTact Hours |PrOgram
Soft Show App Close " Hotes u Keyps " Inl) ” Bid ” S5uH Hrs Qlote Spalin

2. The first thing that Eclipse prompts you for on this screen is an “ID.” To start an
internal tracker assigned to the Boulder office, type eclipse boulder in the ID field

and press Enter.

3. Because there is an exact match for the ID, the system automatically displays the Call
Tracking Select screen shown below and fills in a type of New. This lets you tell the
system that you want to create a new tracker. Press Enter on the Call Tracking Select

screen to start the new tracker.

Call Tracking Select
Type : Hew
Word String :

Eclipse Programmers’ Manual Page 20

e A tracker ID is assigned and the Call Tracking Entry screen is filled in
with all of your and the customer default information, similar to the

example shown below.

Call Tracking Entry
ID: BCR726 Cust ID: 1948 TZ: MST Entered: 06/28/2001-10:3ham User
Customer :Eclipse Boulder Contact S
Category -APPLICATIOHN Priority Hext Action : User
Work Area: Ext Status:Hewitem Final fiction: User
Sub Area : Int Status:-Hewitem Expected Dt :
Source - INTERHAL Sec Lewvel - 9% Delivery Dt :

1l Cormments

Wiew || [Ad1t "uug Flind ”ﬂnrward" [ppend uﬂrint" Copy uﬂunuact |jours | Prigram
Sofjt | Ehow dpp || [Hlose | jotes " lijeys " In[]] " [fid " Sul Hes || Qlote || Spaln

e The “1948” in the Cust ID field is the Eclipse internal ID for the Eclipse
Boulder customer record. You will learn more about internal IDs in the
Introduction to the UniVerse Database chapter of this manual.

¢ The Category, Source, Priority, Ext Status, Int Status, and Sec Level
fields are automatically filled in if defaults have been set up for your User
ID in User Maintenance.

@

Note: If you are entering an internal tracker, you can leave the Contact
field blank, because your User ID is already displayed in the Entered
field. However, if you are creating a non-internal tracker assigned to a
customer account, you must fill in the Contact field with the name of the
customer’s on-site person with whom we can discuss this tracker.

4. Press Enter until the cursor reaches the All Comments field. This is where you will
type the “initial comment” of your new tracker. The initial comment is what drives
the life of the project from this time forward. If the initial comment doesn’t contain
all of the information we need to accomplish the project, people will waste time
trying to find out what the true issue is, or even worse, waste time programming
something totally incorrectly for the customer.

® The initial comment of a tracker should always answer the following

questions:
o Who is the person asking for or forcing this project through?
o Why are you writing this tracker? What is the “problem” we are
trying to solve by changing an Eclipse program?
o What is the proposed solution to the problem stated by the contact

of this tracker? Is this a bug? Semi-Custom mod? True-Custom
mod?

Page 21 Eclipse — Copyright — June, 2001

o When should this project be complete and why are we under this
time constraint? (Is it causing the customer great pain or is it easily
worked around at this time?)

o Where should these changes be made? Only in develop, on site
and in develop (semi-custom), or only on site (true custom)?

e This should be a comment that you would feel comfortable with the client
reading, because they will be able to see everything you just entered in this
“initial comment” on the customer support site of www.eclipseinc.com
and www.eclipsesupport.com.

5. After you have completed the initial comment, press Esc. The Forwarding screen
automatically appears. Eclipse uses this screen for designating who should be seeing
or working on this tracker.

s

()

L4

4

Note: You can also display this screen by pressing the Forward (Alt-F) hot
key on the Call Tracking Entry screen. In this case, however, the Forwarding
screen appeared automatically, because the Forward To list contained no
users and Eclipse will not let you exit a new tracker that is not closed unless

there is at least one name on the Forward To list.

Exercise 3.3: Using Call Tracking System Forwarding

1. Enter your name and your training manager’s name in the Forward To
column.

2. After you enter a name, Eclipse automatically enters Newitem in the Status
column. Press F10 in this field to view all the valid statuses and select another
one.

@

Note: The “Newitem” status is determined by the control record.

® When assigning a tracker to you, your manager will use one of the
following statuses:

o Hot has an expected completion date within 24 hours of
assignment to you (the programmer). Hot is a “drop everything”
status and the tracker must be addressed immediately. It implies
that the problem stated within that tracker is preventing that client
from doing their day-to-day business.

Eclipse Programmers’ Manual Page 22

o Urgent has an expected completion date within one week of being
assigned to you. This status implies that although the client can
still perform most business tasks, something is happening that is
making life very difficult. This is not a “‘drop everything” status,
but the tracker should be addressed as soon as possible. One week
is the very maximum for an Urgent tracker.

o High is one of the two most common statuses you will see at
Eclipse. This status is usually used for a bug at a site. High usually
(but not always) has an expected completion date within 2 to 3
weeks of it being assigned to you. The date will be determined by
your current workload and the size of the project.

o Medium is the other most common status for programmers. This
status is used for things like custom modifications to a site or
enhancements to the Eclipse package. If it is assigned to you on a
bug fix tracker, it will have an expected completion date within 3
to 4 weeks of being assigned. For custom work this same time
frame is also valid but may be extended up to 6 weeks. For
enhancements it can be anywhere from 3 to 8 weeks, depending on
the size of the project.

o Low is a status you will rarely see. This status is used for items
that really are not affecting the Eclipse system in any way but at
some point need to be addressed. The normal expected completion
date for a “bug” with a “low” status is 2 months, but you may not
even get an expected date. It more than likely is a tracker that your
team supervisor wants you to take a look at if you run out of all
other projects.

@

Note: With respect to programming, status and priority mean the same thing
for a tracker. Technically this is your “followup status,” but programming
supervisors use this field to let you know the priority they have assigned to the
project. Throughout this manual, these terms are used interchangeably and
mean the same thing.

3. For your training manager’s entry, you’ll change the follow up status from
Newitem to F.Y.I. This status lets the designated recipient know that the
tracker is being forwarded just to keep them informed and action on their part
is not expected.

4. Notice that the Final Action By and Action Req’d By fields on the
Forwarding screen are both defaulted to you. This same information also
appears on the main Call Tracking Entry screen in the Final Action By and
Next Action By fields.

Page 23 Eclipse — Copyright — June, 2001

® Because there can be multiple people on a tracker’s Forward To list, it is
very important that it be very clear who is responsible for the next action.
If your ID is in the Next Action By field, everyone is waiting on you to do
something with this project before the next step is taken. Until you make
an append (we’ll talk about how to do this next) and change the “next

action by,” you’re totally responsible for completing this project’s “next
action.”

e The person entered in the Final Action By field is responsible for closing
the tracker when everything is complete. This is usually the person who
created the tracker but not always.

® Normally, a tracker will come to you from your programming team
supervisor.

o In the tracker header, your User ID will be in the Next Action By
field.

o There will be a date in the Expected Completion Date ficld. This
date is the latest that you can finish your tracker. It is your “due
date.”

o In the All Comments section, there will be an append saying
“Assigned to: [Your User ID].”

o The assigned Status will be one of the five described in step 6.

5. Press Esc to save the information entered on the Forwarding screen and return
to the Call Tracking Entry screen.

@

Note: In Eclipse pressing Esc saves all changes made on a screen, while
pressing F12 aborts without saving. Also note that if you change a field by
accident and have not terminated that input yet, you can press Ctrl-R to
refresh the value that was initially in that field.

6. Press Esc again.

@

Note: Step 6 is not necessary if you got into the Forwarding screen using F2-S-C
rather than Alt-F.

7. Eclipse automatically displays the Tracking Hours screen, where you need to
assign a task code to the time you spent in this tracker. Eclipse automatically
displays the amount of time the tracker has been open, but you can change
that number, if necessary. It is very important that you enter the correct
number of hours and the correct task code, which explains why you had the
tracker open. The task codes you will be using are:

e TRAINING - Use this code for any time you spend in training classes,
working through this manual, in training meetings, etc.

Eclipse Programmers’ Manual Page 24

e DEVELOP - Use this code any time you’re programming a new module
within Eclipse that is NOT billable to the customer.

e CUSTOM - Use this code for the time you spend on a tracker
(programming, researching, documenting, testing) that is billable to the
customer, whether it’s a true custom or a semi-custom mod.

e INTEGRATE - Use this code for the time you spend integrating code
done on a separate tracker to another place. INTEGRATE should not be
used on the original tracker that coding changes were made against to get
that code onto site.

e RESEARCH - Use this task code only for the time you spend on a tracker
that doesn’t require any coding changes and is not billable to the customer.

e BUGFIX - Use this code for the time you spend on a tracker changing
code that was a bug (not enhancement, custom, or new feature).

=

o
Tip: The number of hours defaulted in the Tracking Hours screen can happen

two ways. The first is just like above for the number of hours you were
actually in that tracker. The second is the “stopwatch” which we will learn
about in a few minutes.

8. Log your time in this tracker to the TRAINING task code.

9. Press Esc to save the changes, exit the Tracking Hours screen, and send the
tracker on its way.

10. Each person listed on the Forwarding screen will receive a message in the
Eclipse Message System indicating that this tracker is now in their User Job
Queue. You will receive a message every time someone adds your name to the
Forward To list of a tracker or someone appends to or changes a tracker
whose Forward To list your name is on. Any time a tracker in your job queue
changes, you receive a message.

®

Caution: While this method is quick and good for reading the comments recently
added to trackers, you should never actually work on a project (tracker) from the
message system. The primary purpose of the message system is to notify you that
something changed. You should always “work” from your User Job Queue,
where you can sort and work on the trackers in order according to their assigned
expected dates and priorities.

Page 25 Eclipse — Copyright — June, 2001

Exercise 3.4: Creating an Internal Tracker

In this exercise you will create an internal tracker that you will use throughout
your initial programmer training for tracking your hours.

1.
2.
3.

0.

Display the Call Tracking Entry screen.
Start a new internal tracker assigned to the Eclipse Boulder office.
Enter the following text as the “initial comment” for your tracker:

[Your Name] - This is the tracker I will use to log my hours and to which I
will attach my programs during my initial Eclipse training. When I have
finished this training I will close this tracker and delete all of my temporary
programs.

Press Esc.

Enter your name and your training manager’s name in the Forward To
column of the Forwarding screen.

Change the followup status for your training manager to F.Y.L.
Press Esc twice.

Enter the task code TRAINING and check that the number of hours displayed
on the Tracking Hours screen is accurate.

Press Esc to save your changes and send the tracker on its way.

Congratulations! You just created a perfect (or close to perfect) tracker within
the Eclipse system.

Eclipse Programmers’ Manual Page 26

Viewing Trackers

Your User Job Queue contains a copy of each tracker for which your name is on
the Forward To list. There are two locations from which you can view your
trackers:

e The Message System

e Your User Job Queue

Exercise 3.5: Viewing Trackers from the Message System

When your name is on the Forward To list of a tracker, every time that tracker is
updated you receive an instant Eclipse message. The message scrolls across the
bottom of your Eclipse screen and is added to your received messages in the
Message System. A message of this sort looks like the following example:

¢ “JQ Rec’d: EL#ABC123 - Status:Newitem”

The message shown above indicates that your job queue received a copy of
tracker number ABC123 (which permanently resides in the Entity Log) with an
assigned status of Newitem.

To view an updated tracker from the Message System:
1. Select Message System on the F2-System menu (F2-M).
2. Press the Received hot key (Alt-R) to view all your received messages.

3. Position your cursor on the tracker message and press the View hot key (Alt-
V).

¢ Eclipse displays the designated tracker in the Call Tracking Entry screen.

4. After reading the message appended to the tracker, press Esc to exit the
tracker and return to the message system.

5. With the cursor still positioned on the tracker message, press the Delete hot
key to delete the message.

6. When you are finished checking your received messages, press Esc to return
to the message screen and press Esc again to exit the message system.

®

Caution: While this method is quick and good for reading the comments
recently added to trackers, you should never actually work on a project
(tracker) from the message system. The primary purpose of the message
system is to notify you that something changed. You should always “work”
from your User Job Queue, where you can sort and work on the trackers in
order according to their assigned expected dates and priorities.

Page 27 Eclipse — Copyright — June, 2001

Exercise 3.6: Viewing Trackers from your User Job Queue

Whenever your name is on the Forward To list of a tracker, a copy of that tracker
resides in your User Job Queue. The tracker remains in your queue until you
remove your name from the Forward To list.

In other words, your User Job Queue contains all the trackers that for which your
name is on the follow up list. This is where you should go to see what you should
be working on and when each project is supposed to be completed.

To view your User Job Queue:
1. Select User Job Queue Viewing on the F2-System menu (F2-Q), or
2. Press Shift-F3 from anywhere within Eclipse.

¢ This displays the User Job Queue Viewing screen, with your User ID in the
User ID field, today’s date in the End Dt field, and “Followup” in the
SelType (Selection Type) field.

3. Press Enter three times. (Press Enter two times if you are coming from Shift
F3.)

¢ This moves the cursor through the header fields without changing the
default data and then displays your trackers.

4. Press the Sort By hot key (Alt-T) and choose the “Expected Date” sort
option. This sorts your trackers so the ones at the top are the ones you must
complete first.

e The trackers are sorted as follows:

o Trackers that you have not read since they were last updated
appear at the top of the list and have a caret (*) preceding the
tracker description. These are followed by remaining trackers.

o Once you go into and out of a tracker displaying the caret ("),
it will go away (you’ve now seen the latest changes). The next
time you sort the queue, the tracker will be listed with the
second group.

o [Each of these two groups is sorted by expected date, with the
oldest date listed first and most recent date listed last.

o Trackers with the same expected date are sorted by the status
assigned to your name on the Forwarding screen.

Eclipse Programmers’ Manual Page 28

5. Press the Change View hot key (Alt-G) and select the “Expected Date”
option.

¢ The screen shown below now shows each tracker’s expected completion
date, status and the first line of the tracker comment.

User User

Programming: Complete Training Manual Exercises

Wiew | [ddit | felect | [[ew Item | Edit |[item | [flose Item | [Jorward | [jrint {
Chan[ije View Sor|] By Efjpand [Jppend Jisplay Opt Expand [Qine [eview

6. To open the tracker, position the cursor on the tracker and press the Edit Item
(Alt-I) hot key.

¢ The complete tracker is displayed in the Call Tracking Entry screen.

=

o
Tip: In addition to using the Page Up, Page Down, and Arrow keys to

navigate the job queue, you can use your mouse to click on the line you want
to select. You can also use the mouse to click on hot keys rather than using the
Alt-Key combination.

You now know how to enter a new tracker, see what trackers have changed, and
look at a list of what projects (trackers) you are working on in expected date
order. The next time that you come into a user job queue, the program will
remember how you sorted and what view you displayed. Programmers should
always sort by Expiration Date and view by Expiration Date because it
provides a perfect “list” of the order you should work on each queue.

Page 29 Eclipse — Copyright — June, 2001

Tracker Stopwatch

While a tracker is open, Eclipse tracks the time. When you close the tracker,
Eclipse prompts you to assign a task code and record your time worked. It is not
necessary, however, to keep a tracker open while you are working on it.

The Tracker Stopwatch feature lets you track the time you are working on one or
more trackers without keeping the trackers open. (The Stopwatch is displayed on
your screen.)

Exercise 3.8: Using the Tracker Stopwatch

1. To display the Tracker Stopwatch screen press Shift-F10 from anywhere in
Eclipse.

e If you press Shift-F10 from a Call Tracking Entry screen that has a tracker
displayed, Eclipse opens the Tracker Stopwatch screen and automatically
adds that tracker is to the list of active trackers, along with the amount of
time you have already spent in the tracker. If the tracker was already on
the stopwatch, then your cursor will be placed on that line.

®

Caution: [t is important that you add your tracker to the stopwatch before editing
another tracker or pushing any levels, or all the time you were in the tracker up to
that point will be lost.

e If you press Shift-F10 from any other screen, Eclipse opens the Tracker
Stopwatch screen and displays the current list of trackers on the
stopwatch. To add a new tracker to the list, position the cursor on a blank
line and enter the tracker number in the Trackr# column. The cursor will
either be on the first non-paused tracker or the first line.

® Once you have entered a tracker on the Tracker Stopwatch screen, you can
go anywhere you want without losing the amount of time you’ve been
working on the tracker.

2. Press Esc to exit the Tracker Stopwatch screen and return to the tracker from
which you pressed Shift-F10.

¢ The stopwatch continues tracking time for active trackers listed on the
screen. You can always go back into the stopwatch to stop or pause the
active trackers if you take a break or work on a different tracker for
awhile.

3. To re-display the screen at any time, press Shift-F10.

4. To pause the stopwatch for a particular tracker, position the cursor on the
tracker and press the Pause hot key.

5. To restart the stopwatch for a paused tracker, position the cursor on the paused
tracker and press the Start hot key.

Eclipse Programmers’ Manual Page 30

To stop the stopwatch for a tracker and record the time worked, you can use
the Stop hot key, but there is another preferred method described in a
following topic.

Press Esc again to exit the tracker and return to the User Job Queue Viewing
screen.

® You will now be in the User Job Queue with the “*” gone from the tracker
you just edited.

Press Esc again to exit the User Job Queue Viewing screen and return to the
main menu.

Press Shift-F10 to display the Tracker Stopwatch screen again.

e The screen displays the current list of trackers on the stopwatch.

Exercise 3.9: Adding your Tracker to the Tracker Stopwatch

In this exercise you will add your tracker to the Tracker Stopwatch.

1.

N o ok w

With the tracker from Exercise 3.7 displayed, add the tracker to the Tracker
Stopwatch screen.

Exit the Tracker Stopwatch screen.

Exit the tracker.

Exit the User Job Queue Viewing screen.

From the main menu, display the Tracker Stopwatch screen again.
Note that your tracker is still listed.

Exit the Tracker Stopwatch screen again, but keep this tracker active. From
this point on you should keep this tracker on the stopwatch any time you work
on this manual.

Exercise 3.10: Editing a Program and Tagging the Change to a

Tracker

Before doing any programming related to a tracker, you should add the tracker to
the Tracker Stopwatch screen. Then you can start making the related
programming changes using the Program Editor.

1.

To display the Program Editor screen shown in Figure 3.5 select System
Programming on the F2-System menu, and then select Program Editor on
that menu.

Enter UBP in the File Name field.

e “UBP” means “user-defined basic program.” This and other valid entries
for the File Name field are explained in the Program Editor chapter.

Enter INLPROG.MANUALI1 (where INI is your first, middle, and last
initial) in the Edit Program field.

e Eclipse displays a Program Names prompt with the option “New.”

Page 31 Eclipse — Copyright — June, 2001

4. Press Enter to confirm that this is a “New” program.

5. Enter E (Edit) in the action field. This field is not named, but shows a string of
action codes.

¢ Entering “E” in this field displays the Eclipse Program Edit screen. When
creating a new program, as you’ll be doing in your next exercise, a
seemingly blank screen with a number 1 in the upper left corner appears.

6. Type “*THIS IS A TEST PROGRAM” on line 1.

@

Note: You will learn more about writing and editing programs in the Program
Editor chapter.

7. Press Esc.

¢ This saves the program and displays the Program Change Log Entry
screen.

e The Program Change Log Entry screen (shown below) automatically
appears when you save and exit a program. Use this screen to document
the program change and tag the change to the tracker for which it was
made.

Program Change Log Entry=—BCH3?3
Program - IHI_HELLO.WORLD

FileHame : UBP Uersion#t = 0.M
Entered By :lser 0652872001 - 12:23pm
fictv Log # =

AL Comment :

Rel Lewel

Change Type:
Corment

Uit Log u Wiew || [lser Queue u [[Log View " Colpr
fActvy Log lindex

8. Describe the changes you made in the Comment field.

¢ The comment you enter here is very important. This helps other
programmers, QA, and Documentation track the changes made in each
“version” of an Eclipse program. So, concisely and precisely describe the
changes you made.

¢ In this test case, enter “Program for training exercise.”

9. Press Esc.

Eclipse Programmers’ Manual Page 32

¢ Because you did not fill in the Actv Log # field yet, the system
automatically places the cursor in that field and displays the prompt
“Valid Activity Log # Required.”

Note: Because trackers are stored in Activity Logs, “Activity Log #” is
synonymous with “Tracker #.

10. Enter the tracker number for which you made the programming changes in the
Actv Log # field. If you can’t remember the tracker number:

e Press F10 to display the Tracking Log Viewing screen. This screen lists
the last 100 trackers you have edited. Position the cursor on the correct
tracker and press Enter. Eclipse copies this tracker number into the Actv
Log # field and fills in the AL Comment field with the first line of the
tracker comment.

=

o
Tip: This F10 “quick access list” of the last 100 trackers you’ve edited is
available from every tracker # prompt in Eclipse.

® You can also press Shift-F10 to display the Tracker Stopwatch screen,
where the tracker you’re working on should be listed. Note the number,
press Esc, and then enter it in the Actv Log # field. When you press

Enter, Eclipse fills in the AL Comment field with the first line of the
tracker comment.

@

Note: The tagging of the correct tracker to the program change log is the
most important thing you will learn in this chapter. If you have any questions

at all open up another test program with a new name and keep doing this until
this is perfectly clear.

11. Press Esc. The Program Change Log Entry screen closes and Eclipse returns
you to the Program Editor screen shown below.

File Hame Edit Progr Run PFrogr
UEP INI.PROG._HAHUALA |IHI.PHBE.H“HUHL1
EL.ED,C,CF,R, 5,08, T,C=,P. U___- |

PTEBII] weer | D0/20/01 Sai3 | miETEE
[Hog " [Jpen List u [Hlose " Coljy ” Coply Open " [fum u |ndo Chg ” [Jocs " Colpare
Pitch Create | [j1d Pgm Idx | Ljind 0bY | Siow Calls | | Phajitom Run
fend/Receive Data ” |3c orm

1 Open Fgms

e The Program Editor screen now shows that this program is open to you
and the action code is a “C.” This is part of Eclipse’s version control and
will be discussed in detail in the Program Editor chapter.

Page 33 Eclipse — Copyright — June, 2001

e Eclipse only allows one programmer at a time to make a change to a
program. This way we guarantee that the program has a single line of
changes and that not more than one change happened within each version.
However, if you keep a program open for a long time other people may be
waiting to change that same program. Thus, it is imperative that you close
a program as soon as possible.

12. Press the Close hot key (Alt-C).

¢ Eclipse closes the program and once again displays the Program Change
Log Entry screen for this program.

13. Make sure that you filled in the Actv Log # field and entered a valid “reason
for change” in the Comment field and then press Esc.

The program is now closed and available for other programmers to edit.

Eclipse Programmers’ Manual Page 34

Appending to a Tracker

As work on a project progresses, various people will append related information
and milestones to the tracker. For example:

e A support person or QA tester appends a question or describe a problem
for a programmer.

e A developer describes a new project or custom modification to be
programmed.

® A customer adds additional information regarding their requirements for
the project.

¢ A manager appends a message assigning the project to a programmer.
® A programmer or manager appends the decisions made at a design review.

® A programmer appends a question (or answer) directed to the customer,
the Support office, a manager, a tester, a writer, or another programmer.

® Any of the people listed above appends an answer (or question) answer
directed to the programmer.

® A programmer can append an explanation of the changes made to a

program.

Note: Whenever you are the “Next Action” person on a tracker and think that you
will not meet the expected completion date, it is your responsibility to make an
append explaining why and suggesting a new expected completion date. When a
new date is agreed upon, you can inform the customer in an “External” append.

Exercise 3.12: Using Tracker Appends

1. To track progress, or to add comments, questions, or other information to a
tracker, display the tracker in the Call Tracking Entry screen and use the
Append hot key.

e So far you’ve learned how to access the Call Tracking Entry screen from
your Received Messages screen and from your User Job Queue Viewing
screen. In this example, you’ll use another way.

2. Select Customer Activity Log Entry on the F4-A/R menu. (F4-Y)
e The Call Tracking Entry screen appears.

3. Enter the tracker number in the ID field.

=

o
Tip: If you don’t remember the tracker ID, press F10 and select from your

quick access list of the last 100 trackers you’ve viewed.

Page 35 Eclipse — Copyright — June, 2001

® The tracker appears with all the information and comments entered to this
point.

4. Press the Append hot key.

e This displays the Append Message screen. By default, the message entered
on this screen will be an “Internal Append.”

5. To change the type of append, use the Append Type hot key or key Alt-T and
type in the message. The valid types of appends are as follows (although, for
now let’s leave the type “internal”):

¢ Internal - Only Eclipse employees (but every Eclipse employee) can see
this append. The customer to which this tracker is assigned cannot see
these appends.

o Your appends should almost always be “Internal” (which is why
it’s the default).

e External - All Eclipse employees and the customer to which this tracker is
assigned can see this append. The customer accesses the Call Tracking
System through the customer support site of www.eclipseinc.com.

o Use an “External” append to request information from the
customer or to provide specific information to the customer.

o Do not use an “External” append to discuss programming issues
with your manager or other programmers.

®

Caution: The “Original” comment and all External appends of the tracker
can be seen by all contacts for this customer on the customer support site.
Spell correctly, use good grammar, and be politically correct when making
these appends. If you have any questions about making an append safe for all
clients, please see your manager

e Secure - Only the people you add to a “secure list” can see this append.
o Enter the message to be appended and press Esc.
o This option will automatically ask for the secure list.

o You can display a message that is only appropriate for certain
users.

6. Press Esc to save the updated tracker.

¢ Eclipse sends a message to everyone on the Forward To list, notifying
them that the tracker has been updated.

o
Tip: Although a newly appended message appears in the Al Comments field

of the tracker before you exit the tracker, pressing F12 instead of Esc will
abort the addition of this append.

¢ Eclipse also displays the Tracking Hours screen.

Eclipse Programmers’ Manual Page 36

7. Enter a task code for the time worked and press Esc.

e Eclipse records the time worked and, because the tracker you are exiting is
also listed on the Tracker Stopwatch screen, then displays the prompt.

o Stop - stops the stopwatch and removes the tracker from the
Tracking Stopwatch screen.

o Reset - resets the stopwatch to zero and leaves the tracker listed on
the Tracking Stopwatch screen.

@

Note: If you press Esc to exit the Tracking Hours screen without entering a
task code, the time is not recorded and Eclipse displays the Tracker
Stopwatch screen. At this screen you can leave the stopwatch running for this
tracker, pause the stopwatch, or stop the stopwatch.

8. Press Enter to accept the “Reset” option.
e Eclipse removes the tracker from the Tracker Stopwatch screen.

You now know how to use tracker appends to ask questions about a project and
update other people on your status for a project.

Exercise 3.13: Making an External or Secure Append to Your
Tracker

In this exercise you will make some appends to the tracker currently listed on
your Tracker Stopwatch screen.

1. Display the Tracker Stopwatch screen.
View the tracker listed on the Tracker Stopwatch screen.
Display the Append Message screen.
Change the “append type” to “External Append.”

2
3
4
5. Enter the message: “This is a test external append.”
6. Save the append.

7. Display the Append Message screen again.

8

Confirm that your append type is “Secure Append.” A confirmation box will
appear. Enter your and your tracking supervisor’s name to secure the list.
Press the Esc key.

9. Enter the message, “This is a test secure Append.”
10. Save the Append.

11. Save your updated tracker.

12. Enter a task code and record your time worked.

13. Reset the tracker on the stopwatch.

Page 37 Eclipse — Copyright — June, 2001

Exercise 3.14: Editing an Existing Append

—

2
3
4.
5
6

Display the tracker you have been working on.

. Place the cursor on any of the 3 appends you created.

. Press the hotkey F2 for Edit Append.

The Append screen is displayed.

. Add “This is line 2 to the Append.

. Press Esc twice.

Exercise 3.15: Closing a Project From Your Queue

When you have completed a project, you need to fill in the tracker’s Problem
Statement and Solution.

1.

From the Call Tracking Entry screen, press the Program hot key.

This displays a screen that has two sections: one for the Problem
Statement and one for the Solution. Regardless of how many appends a
tracker has, this is where anyone can go to read a clear description of the
problem addressed by the tracker and its final solution.

Eclipse automatically fills in the Problem Statement section with a copy of
the original tracker comment, but this field is editable. Quite often, once a
problem has been solved, the original comment does not adequately
describe the problem. When appropriate, you should revise the text in the
Problem Statement section to clearly describe the problem. This helps us
gain a solid knowledge base so we do not waste time solving something
twice.

When appropriate, revise the text in the Problem Statement section to clearly
describe the problem.

. In the Solution section, enter a detailed description that clearly describes the

programming you did and answers all of the questions listed in step 4.

Following the solution, insert a blank line and then add a paragraph for the
documentation and QA departments that tells them what to test and what to
document. A well-written solution should answer the following questions:

e Where was the change made (develop, on site or both)?
® Who was the change made for (customer, future release)?
¢ What kind of change was this (bug, custom, enhancement)?

® What were the changes and enhancements (detailed description, human
readable)?

e What do QA and Documentation need to know about this project?

Press the PG Complete (Alt-P) hot key on the Problem Statement/Solution
screen.

e This displays the Call Tracking Detail Information screen.

Eclipse Programmers’ Manual Page 38

6. Correctly fill out all information on this screen and press Esc to save your
changes.

7. Press the Append hotkey to display the Append Message screen, with the text
of the “solution” already filled in. At the beginning of this append, insert a
description of where these changes were made and if you contacted the client
and how.

8. Press Esc.

¢ Eclipse automatically removes your name from the Forward To (which, in
turn, removes the tracker from your queue) and assigns the “next action

by” to your team supervisor.
Caution: It is very important that you follow all of the above completion steps
every time you finish a tracker (project). This is where QA, DOC, and Support
get all of the information from you as a programmer on how the system was
changed and who was notified. Any lapses here cause major distress later in
the release cycle.

=

o
Tip: If you inadvertently closed your test tracker from your queue, you can get

it back by doing the following. Open the tracker from F4-Y (use F10 for the
last 100 trackers if you don’t remember the number), display the Forwarding
screen and add your name to the Forward To list. Then move the cursor to the
Next Action By field and fill in your User ID. Press Esc until you have exited
the tracker. It will now be listed again in your user job queue.

Page 39 Eclipse — Copyright — June, 2001

Summary

| Customer / End User

R

Customer <'§.‘L|Ill'\|

! Front Line [Custom {Teer)

¢ Rﬁ_‘i)l\".‘\-i)\.‘\clnrl”cnlll

LFCy
Supervisor Drew
3 = Scotl

v

Jason ‘.\|rn|l|

«

Ciroup \;l]\{'l\ SN

v

Programmers

Programmer Work Flow

In this chapter you learned about the life cycle of a project (or tracker) at Eclipse.
This life cycle is basically as follows:

Somebody in Eclipse creates a valid tracker for enhancement, custom
modification, or bug fix. (See above graphic.)

The creator/supervisor of trainer of the tracker sends the tracker to a
programming team supervisor for approval.

The programming team supervisor assigns the tracker (project) to a
programmer (or multiple programmers on large projects).

The programmer finishes the project and closes the tracker using the
Program hot key from the body of the tracker.

The tracker returns to the programming team supervisor.
The tracker goes to QA for testing and approval of the changes.

When required, the tracker also goes to Technical Publications for
documentation.

When testing is complete, the changes made in relation to the tracker are
promoted into the correct release of Eclipse to get out to customer sites on
upgrades.

This is the life cycle of all programming trackers within Eclipse. Some may go
back and forth on the above steps but eventually (if programming was actually
required and performed for that tracker) they all hit every step.

Eclipse Programmers’ Manual Page 40

® You have also learned the very basics of the Eclipse program editor and
how to correctly attach programming changes to the tracker that initiated
them. You learned why the tagging of program changes to the correct
tracker is essential at Eclipse for many reasons, especially to correctly
handle release control.

® You performed a simple assignment to clarify all of the above
information.

Although there are many hot keys in the Call Tracking System that were not
explained, for almost everything you do, you will only need to know about what
was presented in this chapter.

For complete information, refer to the Call Tracking System document.

Frequently Asked Questions

Question:

If T have two trackers in my queue, one being urgent priority with an expiration
date of next week and one being medium priority with an expiration date of today,
which one should I work on?

Answer:

Ninety Percent of the time, the medium priority should be the tracker you should
finish today in order to move onto the urgent tracker. However, if the medium
tracker will take more than “today” to finish, you should talk the priority over
with your supervisor. We almost always work based on the expiration date list.

Question:

Why did this chapter cover what seems to be only about 20 percent of the Eclipse
Call Tracking System?

Answer:

The Call Tracking System was designed for all departments in Eclipse, so there is
functionality built in that programmers will never need to use. Rather than clutter
your head with too much information about this system, we felt it best to present
just what need to know to do your job well in this complex system. As you
become more familiar with the system, refer to the Eclipse Call Tracking System
document in the Eclipse Elibrary for complete detail.

Question:
The two programs we created don’t do anything. Why?
Answer:

The intent of this chapter is just to introduce you to the Eclipse project flow and
make sure you understand each piece of a project. It is much more important that
you understand how to use the Call Tracking System and tag trackers to programs
than how to write any code. The chapters to come will focus on developing your
programming skills.

Page 41 Eclipse — Copyright — June, 2001

Question:
Why is the tracking of hours so important to Eclipse?
Answer:

“Time is money” in the software industry. Tracking hours enables the
management team to see how our programming time is being spent. Is it being
spent fixing bugs, assisting QA or Documentation, or developing new
enhancements?

The most important way Eclipse makes money is by selling the Eclipse DMS.
And to maintain our position as the leader in the DMS marketplace, we must
continually improve our current package. This is part of your job as a
programmer. You will also fix bugs, help QA and Documentation, and develop
custom software for clients. It is very important that the management team make
sure that we as developers are spending as much time as possible developing
software that can be resold and as little time as possible on unrelated tasks.
Logging hours on our projects is how the management team obtains this critical
information.

@)

)4
Note: For a comprehensive explanation of the Eclipse Message System and
your User Job Queue, refer to the Message System, Job Queues and Logs
document in the Eclipse Elibrary.

Eclipse Programmers’ Manual Page 42

Assignment: Lesson 3

1.

Go to your training manager to request the Chapter 2 assignment. Your
training manager will create a test tracker and assign it to you.

Watch closely as your training manager creates this tracker. Do not be
concerned when you see the “assignment” screen; this is only used at the team
supervisor level to assign projects to individual programmers. If you have any
questions at all about the correct methods for creating a tracker, this is a
perfect time to ask them. If you notice an error in what the training manager is
doing while creating the tracker, point it out. It may be a test!

When you get back to your own computer, you will see the instant Eclipse
message that this new tracker has been assigned to you.

Open the User Job Queue Viewing screen and display the list of your assigned
trackers.

Make sure the list is still displaying and sorting by Expected Date.
Open the tracker your training manager sent to you.

Add this tracker to the stopwatch.

Exit the Stopwatch screen.

Exit the tracker.

. Go into the Eclipse program editor and create a one-line program named

“INL.LPROGRAM.MANUAL?2” and save it.

@

Note: Here again INI represents your first, middle, and last name initials and
then . PROGRAM.MANUAL?2 - From here on out in this manual this should be
assumed any time you see a program name starting with INI.

11.

12.
13.
14.
15.

16.

Tag the tracker from this assignment to this program and enter a change log
comment.

Close the program.
make an internal, external, and secure append using our closing procedures.
Send the tracker back to your training manager.

Congratulations, you have just completed the full cycle of a tracker for a
programmer at Eclipse.

Just to be safe, check with your training manager and make sure you
completed all the steps of this assignment correctly.

Page 43 Eclipse — Copyright — June, 2001

Lesson 4

Introduction to the Eclipse Program
Editor

(eclipse

Objectives

When you complete this lesson you will be able to:

e Use the Program Editor
e (reate a subroutine

¢ Distinguish between Basic Programs, Field Basic Programs, and User
Specific Basic Programs
¢ Know other Eclipse Programming files

Eclipse Programmers’ Manual Page 44

Introduction to the Eclipse Program Editor

In this chapter we will discuss the next tool you will use to write code at Eclipse:
the Program Editor. You will make all programming changes in this editor. The
Program Editor can also be used to handle version control, send routines out to
site, and check for changes made to each program in each version. Become very
familiar with this tool, as you’ll need it for the rest of your career at Eclipse.

®

Caution: Because the program editor is so tightly linked with version and release
control it is imperative that you make all programming changes through this
utility.

Most Important Fields

The three most used fields in the program editor are the following (See Figure
below):

¢ File Name
e Edit Program

e Option to Perform (the unlabeled field box in the center of the screen)

File Hame Edit Progr | Run Program——————

E,ED,C,CF,R,5,08,T,C*,P.0...:

Uersion# Last Updated By Open to
|1 Open Pgms
|Hog u [Ipen List ” [Hlose u Colgy " Coplj Open ” [fun || |Indo Chg || [Jocs u Cojpare
Pltch Create | [jld Pgm Idx | |jind 0bY | Siow Calls | | Phalitom Run

[end/Receive Data || |qcomm

Page 45 Eclipse — Copyright — June, 2001

File Name

The File Name field directs the Program Editor to the program file you want to
edit. The file you will use throughout this manual is UBP.

@

Note: UBP is the file where all totally custom Eclipse programming is done.
Because you’re in training and these programs are never to get out to any sites
(from develop) we want them all in the UBP file. We will discuss the other Eclipse
program files later in this chapter.

Edit Program

This field directs Eclipse to the record (program) you want to edit within the file
that you designated in the File Name field. In the figure below, I have specified
that I want to work on the JTS. TRAINING] program that lives inside the UBP
file. Remember the example spreadsheet that you created in Lesson 2?7 In PICK
Basic the programs are just records within a file. In this case the record is the
program name and the file it lives in is UBP.

Option to Perform

In this field, select the option you want to run the edit for the selected program.
The options are all listed and described below.

e (- Compile this program (edit program) using the Eclipse pre-compiler.

e (C* - Compile this program without using the Eclipse pre-compiler. This
option will put your code straight into the BASIC compiler and should not be
used very often. You will never use this option in this manual, however we
will discuss areas of our code that differ from true PICK code.

e (D - Compile this program with debug window inputs.

e CF - Compile a list of programs (your active list). This option can be done
after you do a “Find” from the program editor to compile all of the programs
you found in that list.

¢ CT - Compile test(s) on the edit program. This option will perform a test
compilation before activating the new code. It is very important when you
compile high profile routines in develop or routines on a site. When a compile
blows up, that code cannot be accessed until you complete a successful
compile on that routine. As you can imagine, clients do not like when things
will not work because we blew up a compile!

® D - Delete the edit program from the file you specified in File Name. This
option will save a copy of the routine in the DP file.

e DS - Send a grid layout of the screen to the printer.

e DB - Database allows you to enter a UniVerse BASIC command and get help
from the on-line UniVerse help documents.

Eclipse Programmers’ Manual Page 46

DU - DU let’s you put in a Unix command and get help from the on-line
AIX/UNIX manual on that command.

E — Edit the “edit program” with the Eclipse program editor.

ED - Edit the “edit program” with the UniVerse line editor (not recommended
for use at Eclipse).

EF — Use the Eclipse program editor to edit all of the programs in your active
find list.

P — Print the edit program to the active printer.
R — Run the edit program from this editor.

S — Invoke the Eclipse screen editor to create or edit a screen with the same
name as the edit program.

T — Drop down to Eclipse TCL (True Command Language).
V — View the edit program in view only mode (no changes can be made).

EV — Edit the “edit program” using the new GUI program editor.

@

Note: This new editor will be covered in detail in Lesson 15: New GUI Program
Editor.”

We will go over many of the above options in greater detail throughout this
lesson. Others, which you will not use very often, will be discussed in later
lessons.

Exercise 4.1: Creating A Subroutine

It’s time to create our first piece of true code at Eclipse. This code will be the
simple “Hello World” that we all learn when using a new programming language.
It will simply open a blank window, print out “Hello World” to the user and then

g0 away.
1. Go into the Eclipse program editor (F2-S-P).

2. Putin a file of UBP.

3. Name this program INL.LHELLO.WORLD.

4. Using the E option to edit this routine with the Eclipse editor, pull up your

blank screen. See the figure below.

Page 47 Eclipse — Copyright — June, 2001

File Hame Edit Progr Run Program———————

UBF IMI.HELLO.WORLD |II'II.HELLI].I'.'I]HLI]
E.ED,C,CF,R,S,08,T,C=,P.0...C E
Uersion# Last Updated By Open to
I (1 Open Pgms
|Hog u [Ipen List ” [Hlose u Colgy " Coplj Open ” [fun || |Indo Chg || [Jocs u Cojpare
Pltch Create | [jld Pgm Idx | |jind 0bY | Siow Calls | | Phalitom Run
[end/Receive Data || |qcomm

5. Once you press <KENTER> to accept E as your option you will get a blank
screen. You are now editing your HELLO WORLD program.

6. On the very top line of this program we will put the following:

e “SUBROUTINE (PASSER)”

@

Note: This tells PICK that this is actually a subroutine and not a true program.
Everything that runs in Eclipse except for phantom programs is a subroutine. This
is how we handle the pushing of menu levels. A subroutine always returns control
of the process (thread) to the person who called it. In this manner we can go
anywhere throughout Eclipse as long as it’s a subroutine with only one argument.
Don’t worry about any of the other details at this point, as we will cover this topic
in detail in Lesson 8.

7. Next we need to put in our standard comments. At the top of every subroutine
we have the following mandatory sections (all delimited by our dashed line):

e Subroutine name,
e Description of what this subroutine is suppose to do,

e List of arguments, what the arguments are for, and if they are passed into
or out of this routine,

e Common variables used in this routine.

@

Note: Subroutine name is very easy, it’s just a comment line saying what you
named this subroutine. This field is here so that if you start multi-tasking and
forget what routine you were in you can just go to the top rather than go out and
back into the routine.

8. Put in the following code (after one blank line):

e ““#** Subroutine : INLHELLO.WORLD”

Eclipse Programmers’ Manual Page 48

=

o
Tip: There are two ways to get onto the far left side of the program editor for

these comments. The first is to use your <HOME> key and then type *** and the
comment you want after the stars. The second method is to use our shortcut
SHIFT-F7 which inserts a blank line where your cursor is, puts in three stars,
and puts your cursor next to the stars so you can start typing the comment. The
author recommends using SHIFT-F7, as you will be entering many comments.

®

Caution: It is imperative that the subroutine name be exactly one blank line
below the SUBROUTINE (PASSER) line for Eclipse version control. Having this
name at the direct line below the top line will cause major problems.

9. To go onto the description of this routine we need to end the name section.
We use the dashed delimiting line to do just that. Make sure your cursor is on
a blank line and press SHIFT-F8. This will draw a delimiting line where the
cursor was on the screen.

®

Caution: Be very careful when you press SHIFT-F8, as it does not insert a blank
line before drawing the dashed line. If your cursor is on a line with information or
code on it the dashed line will delete that code and put itself in.

10. Under your new dashed line press SHIFT-F7 and type in the description of
what this routine will do. End that section with another dashed line.

11. Now start your arguments section with another SHIFT-F7. We only have one
argument in this subroutine, which is PASSER. It should look like the
following.

o *#¥% PASSSER — This argument is not used in this routine.

12. Finish the argument section with a dashed line and start the common variables
section by entering:

o ¥k COMMON VARIABLES
e %% Nope are used in this routine

13. End this section with a final dashed line and you’ve completed the mandatory
header for all Eclipse programs. If you have any questions on what code you
should have now please see code listing 4.1 later in this section.

Exercise 4.2: Writing the Program
Now let’s write the actual program.

1. The first command you need for this program is WINDOW. This is an Eclipse
subroutine that you will call to tell Eterm you want a blank screen opened up.
For now we will not pass any arguments, which tells it to be a full screen
window.

Page 49 Eclipse — Copyright — June, 2001

2. The second command you need for this routine is PRINT. This is a PICK
command that sends the string after itself to the active standard out (in our
case the window we just opened). To display “Hello World” on the blank
screen simply insert the following line under your WINDOW command:

e “PRINT ‘Hello World’”

3. To finish off this subroutine close the window using WINDOW.CLOSE.
Select RETURN to give control to the calling program. You should have code
that looks very similar to listing 4.1 below.

£,
=
= |

Note: Every WINDOW that’s opened in a subroutine must also be closed before
leaving that subroutine.

Listing 4.1 — Full listing of INL.LHELLO.WORLD

SUBROUTINE (PASSER)

,
"

: *** Subroutine : JTS.HELLO.WORLD
.k _k
: *** This subroutine will open a blank window and display "Hello World" to

: k% the user in it.
.k _%k

RN ERNM 2

k
10: *** COMMON VARIABLES
11: *** None are used in this routine
12: * -
13:
14: WINDOW
15:
16: PRINT 'Hello World'
17:
18: WINDOW.CLOSE
19:
20: RETURN

Again, this routine just opens a blank screen, prints out “Hello World” and closes
that screen. The final line RETURN tells PICK that this routine is done running
and returns control back to the calling program.

®

Caution: When writing an Eclipse subroutine, it is important that you never use
the PICK STOP command. IF you do use it, then it will drop the user down to
UniVerse command language and end the Eclipse session they were running.

Eclipse Programmers’ Manual Page 50

4. To save your new program press <ESC>, put in a reason for the change, and
tag this program to your test tracker we created in Lesson 2.

Note: Please make sure that your test tracker is also running in the stopwatch so
that you can correctly log all of this time to “TRAINING”.

5. To test this routine you must first compile it. Remember that we are writing
Eclipse code, so make sure to use the C option to compile this routine. If you
typed everything correctly you should have a screen like the one shown below
(successful compilation screen). If your compile was not successful please
look to listing 4.1 and make sure you do not have any typos in the routine.

Connect Dial Dizconnect Edit ConFigure Print ATtachments DeBug Help Meszage Source
UBP THI_HELLO_WORLD Line: 22 of 22

Compilation Complete.

"IHI.HELLO.WORLD"™ cataloged.

PRESS <RETURH> TO CONHTINUE :

6. Once the compile is complete use the R option (R, <KENTER>) to run this
program. This command will pull up the following screen shown below.

Run Subroutine Program: IHI_HELLO.WORLD
PASSER.o as

7. This screen is simply giving you (the programmer) a chance to “pass in” the
argument PASSER with something other than an empty string to test your
routine. In this case we never look to PASSER; so just press <ESC> and your
program will run.

Page 51 Eclipse — Copyright — June, 2001

Now, unless you have very quick eyes or develop is running exceptionally slow,
you didn’t see anything. Why not? Let’s evaluate the routine we just wrote.
Where would this routine stop? That’s correct: it never will. All we told it to do
was open a window, print out the string “Hello World,” and then close the
window. Nothing was written in the routine that said “Wait until the user sees the
message before going away”. You as a programmer would have to write this into
the code.

8. There are many different ways to make a routine stop; we will use the SLEEP
command here. After you print “Hello World” put in SLEEP 5, which will tell
the routine to sleep (or pause) for 5 seconds before it goes onto the next line of
code.

[
g
[E)

Note: SLEEP is another UniVerse function native to its BASIC language. If you
would like more information on SLEEP press F9 while you’re in the editor and
just after typing SLEEP, it automatically will put you in the on-line UniVerse help
for SLEEP.

®

Caution: Make sure you put the SLEEP command after the PRINT but before the
WINDOW.CLOSE or you will just see what you saw before. See listing 4.2 for the
fully revised HELLO.WORLD routine.

Listing 4.2 — Revised listing of INLHELLO.WORLD
SUBROUTINE (PASSER)

: ##*% Subroutine : JTS.HELLO.WORLD

: *** This subroutine will open a blank window and display "Hello World" to
: *** the user in it.

11: *** None are used in this routine
12: %
13:
14:
15:
16: PRINT 'Hello World'
17: SLEEP 5

18: WINDOW.CLOSE
19:

20: RETURN

Eclipse Programmers’ Manual Page 52

9. To test your revised HELLO.WORLD press <ESC> to save it, compile the
latest version, and run it.

10. You should now get the “Hello World” statement on your screen for 5
seconds.

@

Note: Like everywhere else in Eclipse <ESC> is the key that tells the editor you
want to save your changes. This takes all the changes you made since pulling up
that routine and writes them out to disk. Because our version of BASIC
(UniVerse) is not totally interpretive (it is compiled before being run for speed
issues), we must compile this code. When you’re writing Eclipse code it is almost
always put through our pre-compiler and then through the BASIC compiler. This
is what the C command did for you. It also “catalogs” this routine in memory for
fast access from all processes. If you were editing a program and wanted to abort
the changes you had made (all of the changes in that session) you can use the F12
key and you will be prompted, “Are you sure”. F12 will undo ALL changes
you’ve made since pulling up that program. We do not yet have a CTRL-Z
function that just backs out one change at a time. If you forgot to press F12
instead of <ESC>, we do have incremental “Undoes” that we will discuss later
in this lesson.

Exercise 4.3: Copying, Inserting, and Deleting code from the
Eclipse Editor

1. Let’s pull up our “Hello World” routine one more time.

2. Go onto the line where SLEEP is currently located and press ALT-INSERT.
You will notice that a blank line appears above the SLEEP command.

3. Notice that we now have a blank line right above the SLEEP 5 command. To
delete this line press ALT-DELETE with your cursor on that blank line.

4. Now, put your cursor on the SLEEP line again and press ALT-C twice.

¢ This command will highlight that line of code. This is our “copy”
command. The first ALT-C is the “start” line, and the second is the last
line you want copied (or moved).

5. Once you have a section of code highlighted, move your cursor to the line the
code should start on and press ALT-P (Copy) or ALT-M (Move).

e For practice let’s hilight just the line of code where your SLEEP command
is (line 17 in Listing 4.2) by pressing ALT-C twice with your cursor on
that line.

6. Next move your cursor to the line below the SLEEP command and press
ALT-M. You will notice that you just moved the command down one line.

Page 53 Eclipse — Copyright — June, 2001

7. Repeat the hilight of this line of code (the one with SLEEP on it) and this time
move your cursor down one line and press ALT-P. Notice that this time you
have a second line of code exactly the same as your first, just one line below
it. Let’s go ahead and leave our “Hello World” routine this way (See code
listing 4.3 for a full listing of this revised code).

=

o
Tip: The difference between ALT-M (Move) and ALT-P (copy) after using the

ALT-C, ALT-C to select code is that the ALT-M will remove the highlighted code
from it’s original position in the routine and put it where you said to start (the
line your cursor was on when you pressed ALT-M) while ALT-P will leave the
code where it was originally as well as add that same code in the starting position
your cursor was on when you pressed ALT-P.

8. Press <ESC> to save your changes and then compile the routine.

9. Now, run this routine one last time and you should notice that this time
instead of pausing for 5 seconds it pauses for around 10 seconds. This is
because you have two SLEEP commands in sequence, both of which say
“pause for 5 seconds” because one happens right after the next it just looks the
same as one SLEEP command of 10 seconds.

®

Caution: In true programming, you would never write code like we just did.
Using two commands in a row, like this exercise does, when one line of code
would do the same is poor practice.

Eclipse Programmers’ Manual Page 54

Code Listing 4.3 (Revised INLHELLO.WORLD):

: SUBROUTINE (PASSER)
: ** Version# 0.01[3] - 04/02/2001 - 05:10pm - JASONS - develop

: *** This subroutine will open a blank window and display "Hello World" to
: F** the user in it.
8:
9:
10: *
11: *** COMMON VARIABLES
12: *** None are used in this routine
13: %
14:
15:
16:
17: PRINT 'Hello World'
18:
19: SLEEP 5
20: SLEEP 5
21: WINDOW.CLOSE
22:
23: RETURN

1

2

3:

4: *** Subroutine : JTS.HELLO.WORLD
5 .

6

7

Page 55 Eclipse — Copyright — June, 2001

File structure of Eclipse Programming Files (that
are put through the Eclipse Pre-compiler)

So far everything we’ve been programming has lived in the UBP file. As
explained earlier in this chapter, UBP stands for “User Specific Basic Programs.”
This file contains all basic code that will never be included in any Eclipse release.
We use this file on site for true custom modifications, and we use this file in
develop for any modifications we are doing that we do not want to accidentally
get into a release.

Let’s take a look at the other files you will need to know when programming.

1. The first (and lowest level) file is SP, which stands for System Programs.
This file contains basic code that is vital to many things throughout the
Eclipse system (such as the WINDOW subroutine). It also contains our
display functions, print functions and other important functions.

2. The next level up for basic programs is BP. This file contains over 90% of
Eclipse code and contains all subroutines that are not “system level”
subroutines. Anything in develop in files BP or SP will be put into an Eclipse
release at some point.

3. FBP stands for “Field (or Fixed) Basic Programs.” We put any semi-custom
(mods the customer paid for but that will eventually be in a release) or on site
bug fixes in this file. We never use FBP in our development accounts. The
reason we put code on sites in FBP is so that EVERY eclipse site on a release
(such as 7.0.1.8) will have the exact same SP and BP file. Only UBP and FBP
can be different from the base release.

4. Finally we have CBP, which stands for “Client Modified Basic Programs”.
This file holds any BASIC code that our actual clients have modified
themselves. Eclipse personell will never edit a routine in CBP unless it is
approved by their supervisor.

Because each file has a different use within Eclipse, a corresponding hierarchy
exists to determine which programs will be compiled when the same program
lives in more than one of the files. The pre-compiler looks in the following order
to compile the routine: CBP, UBP, FBP, BP, and finally SP. Thus if I have the
same routine in all files, the one in CBP will actually get compiled. If I have the
same routine in UBP and BP, the one in UBP will get compiled. The reasons
behind this structure should be clear from the previous paragraph explaining what
each file does. If we’ve fixed a program on site, for example SOE. TOTALS, so
that it displays properly on Canadian orders and the pre-compiler still compiled in
the BP version, our fix would never show up (we only edit FBP or UBP on site
remember). So it must look to FBP first. On the same note, if we added any
custom code to a program on site, that code should always take precedence over
any other changes.

Eclipse Programmers’ Manual Page 56

Table 4.1: Eclipse Programming Files

SP System Programs

BP Basic Programs (90 % of our code)
FBP Field (or Fixed) Basic Programs

UBP User Specific (Custom) Basic Programs
CBP Client Modified Basic Programs

Exercise 4.4: Understanding the Difference Between BP, FBP,
and UBP in Relation to the Pre-Compiler

Let’s change gears for a minute and do an exercise to help you get a better
understanding of the hierarchy we just talked about on the programming files.
Let’s start by creating a new subroutine in develop in BP.

Note: This exercise will require answering “yes” to the prompt “will this ever be

included in an Eclipse release.” But don’t worry because we will delete this when
we are done with this exercise.

1. Name the routine INL.FILE. TEST.

2. Explain to the user that this routine will just print different words based on
what file it lives in.

3. Complete the required comments. Again we will not use any arguments,
but we must include one generic “PASSER” at the top.

Open a blank window.

Print out the words “I live in BP” on the screen.

Hold the window open 7 seconds.

Close the window and return control to the calling routine.

Press <ESC> to save this routine in BP.

e *® 2N 0 A

Fill in the required change log comments.

10. Attach this program to your training tracker.

Page 57 Eclipse — Copyright — June, 2001

Final Listing for INLFILE.TEST (In BP File)

: SUBROUTINE (PASSER)

: ##%% Subroutine : JTS.FILE.TEST

: *** This subroutine will simply open a blank window, display the message
: ¥#* " live in BP", stay open for 7 seconds and then close the window.
: %% T am writing this routine for exercise 4.4 in the programmers guide.

VERNDUE LN

-k
: ¥ COMMON VARIABLES:

- *** None are used or set in this routine.
.k

: WINDOW

: PRINT 'I live in BP'
: SLEEP 7

: WINDOW.CLOSE
: RETURN

11. Compile this program and run it. You will notice that you get a blank
screen with the words “I live in BP” on it.

12. Now that we have this routine running let’s copy it over to FBP. Go into
the program editor and make the file BP. The “Edit Program” should still be
INLFILE.TEST.

13. Press the ALT-P (Copy) Hotkey, fill in a file name of “FBP”, and leave
the program name INL.FILE.TEST.

14. You will immediately be asked for a reason for copy, and get the program
change log. Fill it out and tag this to the correct training tracker.

15. Make sure that the file is still FBP and that the edit routine is still
INLFILE.TEST.

16. Edit this routine (in FBP) by changing the one line that says “I live in BP”
to “I live in FBP”.

17. Save this routine.

18. Compile the routine and notice that the compiler automatically compiles
the FBP routine and not the one you originally had in BP. To prove that it’s
not based on the “File”, go ahead and change the “File” to your “BP” version

and compile again. Notice it still uses the FBP version.
Eclipse Programmers’ Manual Page 58

19. For one final step run this routine now and you’ll see a blank window with
the words “I live in FBP” on it.

This may seem like a very strange exercise but it is very important that you
understand this file hierarchy or you could end up making changes in the wrong

spot in a customers system.

Page 59 Eclipse — Copyright — June, 2001

Actual PICK code

Another file relevant to your programming at Eclipse is the OC file (Object
Code). OC contains all of your code before we put it into the UniVerse BASIC
compiler. This file is where the “true” PICK code for Eclipse lives.

Exercise 4.5: Differences Between Eclipse and PICK

1.

4,

To see some differences in our code from PICK code, let’s look in OC at our
INLFILE.TEST.

Go into the Eclipse program editor.
Change the file to be “OC” and leave the “Edit Routine” as INL.LFILE.TEST.

Press V <ENTER> to pull this routine from OC up in view only mode.

®

Caution: It is very important to use the “view only” mode in the OC file or all
changes you make will be lost on the compile of this subroutine. Remember the
pre-compiler only writes out to OC, it never reads what’s in there to make sure
you didn’t change anything.

You should see the code from listing 4.4.

Eclipse Programmers’ Manual Page 60

Listing 4.4: INLFILE.TEST from OC

SUBROUTINE (PASSER)
$INCLUDE CC COMMON

CALL WINDOW(H’"’ll’"’ll’"’ll’")
PRINT T live in FBP'

SLEEP 7

CALL WINDOW.CLOSE(")
: RETURN
: * Compiled by JASONS on 06/14/01 14:11 from BP:JTS.FILE.TEST
: % Version# 1[1] - 06/14/2001 - 02:11pm - JASONS — develop

5. Notice the differences between line #2, all of the comment or blank lines, line
22, and finally lines 24 and 25. Notice that on the WINDOW and
WINDOW.CLOSE lines the pre-compiler automatically added the word
CALL in front of them. Why? It did this because it found those to be Eclipse
subroutines (they live in OC as well). Instead of requiring you to type CALL
every time you want to call an external routine, we have the pre-compiler do it
for you.

6. Also, notice that it filled in empty parameters within parenthesis (‘) for the
subroutine calls. This is the number of arguments this subroutine expected. In
this case WINDOW.CLOSE expected one argument and we didn’t supply
any.

Well, while our subroutine may be smart enough to handle an empty string for a
parameter, it still must be called with the correct number or we would receive a
run time error saying “Subroutine WINDOW.CLOSE called with X arguments
when Y were expected”. So again, instead of making you the programmer type all
of these extra, unneeded *“” parameters, the pre-compiler filled them in for you. If
you had supplied too many parameters for this subroutine, the file would have
truncated the parameter list at the highest number the subroutine could take.

Page 61 Eclipse — Copyright — June, 2001

®

Caution: While this parameter addition/subtraction is very nice in terms of not
having to type this extra parameter(s) every time, it also makes it necessary for
you to re-compile all code that calls this subroutine whenever you change the
number of arguments a routine can take. We will discuss how to do this in detail
in Lesson 6 “Standard Eclipse operating environment”.

Eclipse Programmers’ Manual Page 62

Other Eclipse programming files

There are four other programming files that you will need to know about before
the end of this lesson. The first three are where we store code such as our pre-
compiler and any macros that we want run in true PICK Format. These files never
get put through the Eclipse pre-compiler. They are instead compiled with the
normal UniVerse BASIC compiler.

The three files follow:
1. MP — Macro Programs
2. PP — Pre-compiler Programs (anything to do with the pre-compiler lives here)

3. CC - This is where we store all the common (non-program) related
information.

We don’t need to go into any more detail on these files in this lesson as long as
you know they exist. We will cover each one of them in a later lesson.

The last file you need to know about is the SCREEN file. This is where all of our
Eclipse screens live. We will be designing and editing screens throughout this
manual and they will all live in the SCREEN file.

Page 63 Eclipse — Copyright — June, 2001

Displaying Strings in Different Places Around the
Screen

So far in our HELLO.WORLD example we have always displayed the text in the
upper left hand corner of the screen using the PRINT command. The reason for
this positioning is that PRINT puts the string out wherever the cursor is located.
Because we started with a blank window, the cursor started in the top left of the
window. If we wanted to move the string around in the screen, we would have to
use multiple PRINT commands and spaces to get the cursor where we wanted to
print our string. Unfortunately if we then wanted to print something up above this
point we could not do it. No way exists to move the cursor back up to a point
before its current location.

Exercise 4.6: Moving Text Around the Screen with the PRINT
Command

To play with this function let’s edit our HELLO.WORLD routine by changing it
to print “HELLO.WORLD” on the 5™ line, 20 spaces from the left.

1. Edit your INLHELLO.WORLD and add a single PRINT command on the
line above the PRINT “Hello World”.

2. Copy this line 3 times to get a total of four PRINT lines before the actual
printing of the string.

3. Change the PRINT “Hello World” line to PRINT SPACE(19):”Hello
World”. Your code should look like Listing 4.5 now.

@

Note: The SPACE function we used in step 4 is another handy PICK function that
will put out a string of spaces with the integer number you passed into it — in our
case a string of 20 spaces.

4. Save, compile and run this routine. This time you will get the results
shown in the figure below with the string “Hello World” down 5 lines and 20
spaces in from the left. It appears in this location because the first 4 prints put
out carriage return and line feeds (moving the cursor down one line each
time). Then we added the SPACE(19) (for 20 spaces) with a “:” between it
and out “hello world” string. This ““:” tells the PRINT command not to put out
a carriage return and line feed after it prints the string. So the 19 spaces and
the string “Hello World” are kept on the same line. You can also end a PRINT
command with a “:” which will make the next PRINT command start at the
same place the previous one did. So to get the same results we just did we
could have inserted a PRINT SPACE(19): above the PRINT “Hello World”
and the program output would not change.

Eclipse Programmers’ Manual Page 64

Code Listing 4.5 (Newly Revised IN.LHELLO.WORLD):

: SUBROUTINE (PASSER)
: ** Version# 0.01[3] - 04/02/2001 - 05:10pm - JASONS - develop

: *** This subroutine will open a blank window and display "Hello World" to

: ¥*%% the user in it.
8:
9:
10: *
11: *** COMMON VARIABLES
12: *** None are used in this routine
13: %
14:
15:
16:
17: PRINT
18: PRINT
19: PRINT
20: PRINT
21: PRINT SPACE(19):'Hello World'
22:
23: SLEEP 5
24 SLEEP 5
25: WINDOW.CLOSE
26:
27: RETURN

1

2

3:

4: *** Subroutine : JTS.HELLO.WORLD
5 .

6

7

Conpect Dial Digconnect Edit ConFigure Print ATtachments DeBug Help Message Source

Hello UWorld

Now let’s look at how we could have accomplished the same thing without using
all of the extra print statements.

Page 65 Eclipse — Copyright — June, 2001

Introduction to PRINT @ Commands

PICK comes with another PRINT function that can only be used on screen
display. This is the PRINT @ function. You follow the @ sign with two
parameters in parentheses. These parameters are the X and Y (Horizontal and
Vertical) positions you would like this string displayed on. So if I wanted to print
“Hello World” at line 5, on the twentieth position, I don’t have to enter four blank
PRINT lines and SPACE(19) to get to that position. Instead I could write one line
of code that says:

e “PRINT @(20,5):’Hello World’”

Again, the program output would not change (see the figure below).

Exercise 4.7: Using Print @ Commands
1. Let’s make one more edit to your INLHELLO.WORLD routine. Delete all of
the PRINT lines.

2. Insert the PRINT @ command and let’s use the same coordinates (20,5). Your
code should now look like Listing 4.6 below.

3. Save, compile and run this routine and you will see the exact results you saw
before.

1: SUBROUTINE (PASSER)

2: ** Version# 0.01[3] - 04/02/2001 - 05:10pm - JASONS - develop

3:

4: **%* Subroutine : JTS.HELLO.WORLD

5:
: *** This subroutine will open a blank window and display "Hello World" to
: #*% the user in it.

9.
10: *
11: *** COMMON VARIABLES
12: *** None are used in this routine
13: %
14:
15: WINDOW

16:

17: PRINT @(20,5):'Hello World'
18:

19: SLEEP 5

20: SLEEP 5

21:

22: WINDOW.CLOSE

23: RETURN

Eclipse Programmers’ Manual Page 66

So, as you can see the PRINT @ command gains you a lot of flexibility. We can
move the cursor anywhere we want on the screen to display strings, and in effect,
we don’t have to print everything in order from left to right and top to bottom. We
can also easily replace strings that are already on the screen with a new screen
based on user input without re-displaying the entire screen. This function makes
the user interface flow much better on large data entry screens. It also makes the
code much easier to follow and understand. Because of all of these advantages,
always use PRINT @ when displaying static information on a screen.
Unfortunately there is no couterpart to PRINT @ when working with a printout,
we must use the PRINT command. We will discuss printing to reports and the
hold file in detail in a further lesson.

Exercise 4.8: Displaying and Re-displaying Different Strings on
the Same Screen
1. Create a new subroutine in UBP called INL.STRING.DISPLAY.
Enter the appropriate comments in the header of the subroutine.
Open a blank window.

2
3
4. Display the string “String Number 17 at position 35,6 on the screen.
5. Pause 4 seconds.

6

Overwrite the initial string with the string “String Number 2” at the same
position.

7. Pause 4 seconds.
8. Close the window and return control to the calling routine.
9. Save, compile and run this routine.

Your program should initially display the string “String Number 1” for 4 seconds
and then display the string “String Number 2” for 4 more seconds before the
window is closed the Program Editor screen is displayed. Your code should look
very similar to listing 4.7 below.

Page 67 Eclipse — Copyright — June, 2001

Code Listing 4.7 INL.STRING.DISPLAY in UBP)

: SUBROUTINE (PASSER)
: ** Version# 0.01[3] - 04/02/2001 - 05:10pm - JASONS - develop

: *¥*#* This subroutine will open a blank window and display two strings to

: *** the user in it. Each string will be on screen for 4 seconds.
8:
9:
10: *
11: #*¥* COMMON VARIABLES
12: *#** None are used in this routine
13: *
14:
15:
16:
17: PRINT @(35,6):”String Number 17
18:
19: SLEEP 4
20:
21: PRINT @(35,6):”String Number 2”
22:
23: SLEEP 4
24:
25: WINDOW.CLOSE
26:
27: RETURN

1
2
3:
4: *** Subroutine : JTS.STRING.DISPLAY
5.
6
7

Notice that because we displayed the second string in the exact same position and
length, the first string was overwritten and the user only sees the second string.
Unfortunately many times when we need to remove one string and overlay it with
another string, the second string is shorter in length. What would happen if, in our
above example, we changed the second string back to “Hello World”? Let’s go
ahead and do this.

Exercise 4.9: Replacing a String with a Second, Shorter String
1. Edit your INLSTRING.DISPLAY in UBP
2. Change line 21 (String Number 2) to display “Hello World”

3. Save, compile and run this new routine.

Eclipse Programmers’ Manual Page 68

Now, after the 4 second delay you will see the output “Hello World”, which is
printed at 35,6 and the first part of “String Number 1" is gone. However, the last
part is not. This is because the second string was shorter than the first and the
PRINT @ only prints the string we told it. If we don’t force the length of the
strings to be the same, PRINT @ will only re-display the characters in the second
string.

Three possible solutions exist to fix this problem.
e (lear the entire screen before displaying the second string
¢ (lear the entire line (6) after the second string (from the char after d on)

e Make the string lengths the same so that the second string completely
overwrites the first.

While option 3 is the one we most often use, let’s look at all 3 possibilities.

e The 1* option is very easy to accomplish. All we have to do is insert a
PRINT @(-1) right before the PRINT @ (35,6):”Hello World”. The
PRINT @(-1) tells our terminal emulator to clear the entire screen. This
will obviously give us the results (figure ccc) that we’re looking for.
However, this is like taking a sledgehammer to fix a watch. See listing 4.7.

Page 69 Eclipse — Copyright — June, 2001

Code Listing 4.8 (Revised INL.STRING.DISPLAY in UBP)

: SUBROUTINE (PASSER)
: ** Version# 0.01[3] - 04/02/2001 - 05:10pm - JASONS - develop

: *¥*#* This subroutine will open a blank window and display two strings to

: *** the user in it. Each string will be on screen for 4 seconds.
8:
9:
10: *
11: #*¥* COMMON VARIABLES
12: *#** None are used in this routine
13: *
14:
15:
16:
17: PRINT @(35,6):”String Number 17
18:
19: SLEEP 4
20: PRINT @(-1)
21: PRINT @(35,6):”String Number 2”
22:
23: SLEEP 4
24:
25: WINDOW.CLOSE
26:
27: RETURN

@

Note: While PRINT @(-1) will clear the screen there is also an eclipse subroutine
CLEAR.SCREEN which will usually be used to do this. We will look into this
subroutine in later lessons.

1
2
3:
4: *** Subroutine : JTS.STRING.DISPLAY
5.
6
7

e Now let’s look at option 2. This option is a little better than the first option
we looked at, but it still has a drawback. If there was any data other than
this string on the right side of the screen, then we would be overwriting
that data. However to accomplish the clearing of the rest of the line
(beyond “Hello World”), we could do the following:

1. Use a PRINT @(-4) on the line after the printing of Hello World.

2. Add a colon (:) to the end of the “Hello World” line to give us our
desired results. The reason we need to add “:” at the end of the print is
to keep our cursor on that line. Again, the PRINT @(-4) clears the
“remaining characters after the cursor on the current line”. A normal
PRINT or PRINT @ that doesn’t end with a colon will move the
cursor down to the next line.

Eclipse Programmers’ Manual Page 70

Code Listing 4.9 (Revised INL.STRING.DISPLAY in UBP)

SUBROUTINE (PASSER)

: ** Version# 0.01[3] - 04/02/2001 - 05:10pm - JASONS - develop

: ##% Subroutine : JTS.STRING.DISPLAY

: *¥*#* This subroutine will open a blank window and display two strings to
: *** the user in it. Each string will be on screen for 4 seconds.

10
11
12
13

.k
: ¥ COMMON VARIABLES

: *** None are used in this routine
.k

14:
15:
16:

17:

PRINT @(35,6):”String Number 17

18:

19:

SLEEP 4

20:

21:
22:
23:

PRINT @(35,6):”String Number 2”:
PRINT @(-4)
SLEEP 4

24

25:

WINDOW.CLOSE

26:

27:

RETURN

¢ Finally, let’s look at option 3. This is the option we will most often use in
our code because it forces the two strings to be the same length. We will
accomplish this task by using formatting syntax that is native to PICK,
which let’s us justify our strings right or left, pad them with spaces or
characters, and output numbers in many different formats, as well as many
other things. In the current example, we could do the following:

1. Left justify both of our strings the same number of spaces. This will
make them both the same length. When the smaller string is printed
over the larger, the extra spaces will still clear out the remainder of
that larger string.

2. Next we will just add the following to the end of our “Hello World”
line with spaces or without a delimiter between the ‘“”’and formatting
information. Make your Hello World print line look like the following:

o “PRINT @(35,6):’Hello World” ‘L#15”

Page 71 Eclipse — Copyright — June, 2001

This will left justify the string “Hello World” and pad is up to the 15 characters. If
the string was more than 15 characters it would only take the leftmost 15
characters of that string. Using these formatting commands we can make our
strings match whatever specifications we need to make the program work as we
want. Again we will still see the results we desire and still only have the two
PRINT @ commands. See Listing 4.10 below

Code Listing 4.10 (INL.STRING.DISPLAY in UBP)

: SUBROUTINE (PASSER)
: ** Version# 0.01[3] - 04/02/2001 - 05:10pm - JASONS - develop

. %% Qubroutine : JTS.STRING.DISPLAY

: *** This subroutine will open a blank window and display two strings to
: *¥** the user in it. Each string will be on screen for 4 seconds.

: ¥*%%* PASSER - This argument is not used in this routine
10: *
11: *** COMMON VARIABLES
12: *** None are used in this routine
13: %
14:
15: WINDOW
16:

17: PRINT @(35,6):”String Number 1”
18:

19: SLEEP 4

20:

21: PRINT @(35,6):”Hello World” “L#15”
22:

23: SLEEP 4

24:

25: WINDOW.CLOSE

26:

27: RETURN

In summary we will always use the PRINT @ command to display static
information on the screen. This command has many options but the most used
option is to display the information in the correct spot (X,Y) on the screen.
Finally, we have just introduced the formatting syntax within PICK, we will
discuss this in greater detail as we start doing more complex work in this manual.

Eclipse Programmers’ Manual Page 72

Exercise 4.10: Using the Undo Option in the Program Editor

1. Let’s go into our last routine INLHELLO.WORLD and delete all of the code.

2. Save the empty program and get back into the program editor. Now, you’re
saying, what was the point? The point is sometimes we make mistakes, on
accident, or break our code to the point where we’re better off starting over.
The Eclipse program editor has a very nice feature called “Undo” that protects
us against ourselves in these cases. So, now that we’ve completely destroyed
your Hello World routine, let’s get it back.

3. Go into the program editor and make sure the file is UBP and the Edit
program is “INLHELLO.WORD”

4. Press the Undo Chg hotkey (ALT-U)

5. You will receive the prompt asking if you want to undo version, mod, or
nothing

¢ Version will undo every change you have made since opening this
program. You will use this option in cases where you:

o Edit a routine for debug and find the bug in another routine,

o Where you changed this routine but decided the changes are
better off somewhere else or the changes didn’t fix the
problem,

o Or you really broke the code and need to start fresh.

e Mod will only undo the changes you made in the last edit session. This
option exists in case your latest changes broke the routine.

o You can use it to get back to the file before you made those
changes.

o You can also use it if you accidentally deleted or changed code
and pressed <ESC> instead of F12 to abort.

¢ Nothing is there in case you accidentally pressed Undo and don’t need
this option. It aborts the Undo function.

6. In this case we only want to undo our very last changes, so choose M for
4£m0d”

7. Edit this routine

8. You will see that all of your code is back just the way it was before we deleted
everything

=

o
Tip: Undo can only be done if the subroutine is still open to you. If you made

changes and need to get them out of a closed version of a subroutine, you must
open another version and manually back out your code’s changes. To find what
changes you made you can use the “Compare” option in the Program Editor
which we will discuss in the next exercise.

Page 73 Eclipse — Copyright — June, 2001

Using the Compare hotkey in the program editor

The Compare option in the Eclipse Program Editor let’s you compare different
versions of the same subroutine. You can also compare one subroutine to another
or the same subroutine in BP and FBP (or any other file) to itself. This option is
helpful when trying to find out what change was actually made in a version, what
changes were made on site, or what custom mods are in site versus in the BP
version. You can even compare “mods” of a program so you can see what
changes you made in each “edit” session.

Note: An edit session is from the time you pull the program up in edit mode to the
time you pressed <ESC>. We don’t save a “mod” unless you press <ESC> and
save the routine to disk.

Exercise 4.11: Using the Compare Hotkey

1. Go into the Program Editor for UBP, INLHELLO.WORLD and let’s compare
two “mods” of this routine.

2. Press the hotkey Compare (ALT-M). This screen defaults to comparing the
last mod you made on an open program.

3. Press the Begin hotkey (ALT-B).

® You could also use the hotkey Strip comments Then Compare (ALT-S).
The nice feature on this key is that it will not clutter your compare screen
with comment changes that you’re not worried about.

4. Enter UBP for the source file

¢ This option is what you would change on site when comparing a UBP
version to a BP version of a program. You would change this file to the
file you wanted to compare the program you had chosen in the Program
Editor. So in our example if we had a BP version or our routine and had
picked the UBP in the PE we would change this value to BP and it would
compare our UBP to our version.

5. You will see a screen listing all changes, new lines, or deletions that you made
between the two mods. Press <Esc> to leave this screen.

6. Answer N (no) to saving a report in your hold file

¢ This lets you save this report for later reference in the Eclipse hold file so
that you don’t have to re-run the compare later. Usually one compare is
enough.

7. You should be back in the Eclipse Program Editor.

Again, Compare lets you compare versions, mods, and programs to each other in
order to find out what differences exist in the code.

Eclipse Programmers’ Manual Page 74

Summary

In this lesson we introduced you to the Eclipse program editor and the Eclipse
programming environment. We talked about what files your programs will live in,
and how to create, compile, edit, and run programs. We also talked about some of
the nice features of Eclipse BASIC vs. PICK BASIC and of the Eclipse pre-
compiler. We introduced the PICK “SLEEP” function. You also learned how to
open a blank window and how to display information in that window. Finally, we
discussed the OC file, and other eclipse programming files such as SCREEN and
MP.

Assignments: Lesson 4

1. Create a program that will display “Hello My Name is: Your Name” in the
center of a blank window for 15 seconds. Name this program
INLASGNMT 41.

2. Create a program that will display the string “Scrolling Text” starting on

the right hand side of the screen and scrolling to the left and off the screen
(just like your scroll bar for the Eclipse Instant Messenger). This message
should be on the center line of the blank window. Scroll the message two
times and then leave the routine. Name this program INLASGNMT.42.

3. Create a routine in which you will display the text “Random Position” 10
times on the screen in a random X and Y position. Each time it displays it
should pause for two seconds before re-displaying in a new position. Name
this program INLLASGNMT.43.

Page 75 Eclipse — Copyright — June, 2001

Lesson 5

Introduction to the UniVerse
Database

(eclipse

Objectives

When you complete this lesson you will be able to:

Create files in UniVerse
Create dictionaries in Universe
Use the Edit command

Use the COUNT command
Use the STACK command
Use the SELECT command
Use the SORT command

Eclipse Programmers’ Manual Page 76

Overview

As we stated in a previous lesson, the UniVerse database is a multi-dimensional
database that was started to support the original PICK database. Since its
conception UniVerse has added many more file types to the database, as well as
enhancements, such as secondary indexes and ODBC compatibility within the
database. In this lesson we will take a high level overview of the UniVerse
database. We will discuss what a file, record, and attributes are within the file, as
well as how dictionaries play into all of this. We will learn how to create a file,
record and dictionaries by using TCL (True Command Language). We will also
see what exists in a file, learn how to select data out of a file, and learn how to
clear and delete files. Further, you will learn about the types of files we use and
how to correctly size files based on the data you will put in it. Within this topic,
we will cover the internal workings of files so that you as a programmer will have
the knowledge you need to correctly create and maintain files (tables) within the
Eclipse application.

This lesson is a necessary step in your development as a programmer as most of
what you will program within Eclipse will at some time need to interact with the
database and files. It is important for you to know what is happening behind the

scenes before you start using the programs to access this information.

What is a file?

As stated in Lesson 2, a file is a grouping of like items on disk within the
database. This means that, like a file cabinet, a file contains records which all
contain similar information. Back to our grade school example, our file contains
our records for grades, sick days, etc. For another example go back to our Excel
spreadsheet and look at our “file” that contained our relatives information. The
file contained records (each row was a record in that example) and each record
contained the same information about each of the relatives in the same columns.
So, in summary, a file is just a collection of similar data in the database stored on
the disk drive.

Page 77 Eclipse — Copyright — June, 2001

What is a record?

A record lives within a file, and within the record is where the actual data of a file
lives. Each record must have a unique ID. Again looking at our grade school
example, our record would probably be something like your social security
number. For our relative information, we let Excel assign the unique key for each
record, which was the line (or row) number on the far left of our screen.

Within UniVerse files, we as programmers get to pick what kind of record ID
(key) to use. It can contain numbers, alpha characters and most punctuation
characters. However, each record must be identified by a unique ID (meaning that
no other record can share this ID). Again if you were looking at a file cabinet as
an example, this ID would be the lable printed on the folders inside the drawer. If
you had two folders with the same label, you would have to look in both to find
the record that you wanted. This identity problem is much worse in a database file
because a computer can’t ask “which one did you really want”. Instead it will
overwrite the old record with the new one if you use the same ID.

Within the UniVerse database we can store data at the attribute (column in our
Excel example). Every record within the file should contain the same piece of
information in the same attribute. So for a contact database the first name of every
contact would all live in attribute 1. As programmers, no matter which record we
work on, we know we can use the first attribute to find the first name that belongs
to that contact. The nice thing about the UniVerse database is that we are not
limited to storing one piece of information at the attribute level like a relational
database. We can store up to 5 and 6 dimensions very easily. The most popular
option is to put a value level in each attribute, which allows multiple values
within each attribute. The sub-value level, which is the next level down, allows
multiple values within each value position that exists within each attribute and so
on.

In UniVerse the attribute, value, and sub-value positions are held by special
characters.

¢ The Attribute level is held by the attribute mark (ASCII character 254).

¢ The Value positions within each attribute are separated by the value mark
(ASCII character 253)

¢ The Values within each value position are separated by the sub value
mark (ASCII character 252).

As you can see, no limit exists to the number of dimensions this structure can
support unless you start getting into printable characters.

@

Note: Each record within a file is separated by the Record delimiter (ASCII
character 255) in case you’re wondering why they started at 254. See table 5.1

Eclipse Programmers’ Manual Page 78

Table 5.1 — Data Delimiters within the UniVerse database

Description ASCII UV Eclipse Name ASCII Decimal
Abbreviation Abbreviation

Record Delimiter | IM 255

Attribute Mark FM @FM, @AM AM 254

Value Mark VM @VM VM 253

Sub Value Mark | SVM @SM SVM 252

To remind yourself how files and records work together, remember that files
contain records and records contain data. Each record will contain the same type
of data in the same attribute, so every contact in the CONTACT file will have it’s
last name in attribute 3.

Dictionaries and the UniVerse Database

Every file within UniVerse contains a second file, which is the Dictionary file.
This file defines what data lives in what attribute of our main file. If we look at a
CONTACT file there will be another file, more than likely named D_CONTACT.
This file contains records that define what lives in attribute 1, 2, 3 and so on. If a
first name was suppose to be in attribute 1 of the CONTACT file, we may have a
dictionary ID FIRST.NM that pointed to attribute 1 of the CONTACT file. The
dictionary allows us to see what data lives where in the file, as well as what
format we should be putting the data in when we enter it into the file. A benefit of
UniVerse dictionaries as compared to relational table setups is that UniVerse
doesn’t force our data to match what the dictionary says. Yet this benefit can also
have its negative effects if programmers are not careful in putting data into the
correct position of the records they are updating.

Any time you create a new field in a file at Eclipse, you must first define the
dictionary item, search in OC to make sure it’s not already used, and get your
supervisor to sign off on the new attribute before entering data. This process
ensures that we do not create attributes that we do not need and that when we do
create new attributes they don’t overlap with another programmers code. We will
discuss creation of dictionaries later in this lesson.

The types of dictionaries that define what data is in a record in the file are one of
three types:

1. A Type - “Attribute” dictionary item

Page 79 Eclipse — Copyright — June, 2001

2. S Type — “Synonym dictionary item”

e S Type was really almost exactly the same as “A” but put in place for
people who couldn’t understand how one attribute in UniVerse could
really contain more than one piece of information.

3. D Type — “Field Definition dictionary item”

® Both A and S Type Dictionaries have been deprecated and all
programmers should be using D Type Dictionaries to define fields in files.
We should never use types A or S.

All 3 dictionary types above define what data lives in each attribute of a file. As
stated we only use D Type at Eclipse since A and S Types are being phased out.
Along with telling us what lives in files these dictionary items can also be used to
query the database, as we will see later in this chapter.

Exercise 5.1 — Creating a File Within UniVerse

1. Go into Eclipse TCL, either by going to the program editor and using T in the
option field or by selecting the menus F2-System/TCL.

2. Type in the command CREATE-FILE and hit ENTER.

You will be prompted for “File Name”. Type INL.LMANUAL.TEST and press
ENTER.

»

Next you are prompted for “Modulo”. Typel3d and press ENTER.
You will be prompted for “Separation”. Type 1 and press ENTER.
The next prompt will be for “File Type”. Type 18 and press ENTER.

N s

Enter the same data in the next three corresponding prompts for the Dictionary
file.

®

Caution: We are prompted for two pieces of information because every file we
create actually has a Data file and a Dictionary file. In this case, because we are
creating a very small test file, the dictionary has the same information as the file.
In most cases this will not be the case. You will rarely have a dictionary file any
bigger than the one we just created and you will never use any type other than 18
for a dictionary file.

8. Enter Test file for class in the file description.

® You have now created the UniVerse file INLMANUAL.TEST. So far
nothing is in this file, it’s just empty waiting for data to be entered into it.

9. To prove this type in COUNT INLMANUAL.TEST. This command
(COUNT) will return you the number of items (records) in the file you ask it
to count. In this case, the screen will display 0 Records counted.

Eclipse Programmers’ Manual Page 80

10. Another way to see what lives in a UniVerse file from TCL is the LIST
command. Still in Eclipse TCL type in LIST INLMANUAL.TEST. This
time you will receive the message 0 records listed from UniVerse.

To see what occurs when data lives in a file, we will create that data. However,
before we put any data in the file we should (we don’t have to but we should)
create the dictionaries in order to determine where everything will live.

Exercise 5.2 — Adding data manually to a UniVerse file using ED
command

Let’s make this file contain information about cars, we’ll make the record IDs a
sequential counter. We will make Attribute 1 contain the make, 2 will contain the
model, 3 will contain the number of doors, 4 will contain number of passengers,
and S will contain the year that this data is valid for this make/model. We will
manually enter two records to get started on this file and also introduce you to the
UniVerse line editor ED.

1. Enter ED INLMANUAL.TEST 1.
¢ This command will put you into the UniVerse line editor (ED) as well as
prompt you that this is a new record. This prompt means that you are
editing a record in the file that was not already there.
Caution: While I am introducing the line editor here and want you to be
comfortable using it (it can be a very powerful cleanup and debugging tool), very

few incidents at Eclipse occur prompting need of this tool. lit should never be
used to edit programs. You must always use the Eclipse program editor instead.

2. Enter <ENTER>. This command enters you into Insert mode and will place
your cursor in Attribute 1 (0001=) to enter data.

@

Note: When you enter into Insert mode in the UniVerse line editor, you start on
the line AFTER your cursor. Because this record is empty, our cursor started on
line 0 and thus we started inserting data at line (attribute) 1. If we had a record
with data in it, we would have jumped to the line before we wanted the new data
(by entering the line#<ENTER>) and then pressed IKENTER> to begin
inserting this data.

3. Let’s put in a Lamborghini Diablo to start. Attribute 1 should be
Lamborghini. Press <KENTER> once you have put this in and the editor will
put you on line 2.

@

Note: This is a “Line Editor” which means that once you are on line 2 you cannot
get back to line 1 without terminating your Insert mode. The only way to
terminate the Insert mode is to press <ENTER> on a blank line. However, this
line (attribute) will not be saved (the blank line you pressed <ENTER> on). If

Page 81 Eclipse — Copyright — June, 2001

you made a mistake in step 2, do not worry now. We will discuss editing this data
later in this exercise.

4.

10.

11.
12.

Attribute 2 is the model. Enter “Diablo” and press <ENTER> to go into
Attribute 3.

Attribute 3 is the number of doors. This car has 2, so enter 2 and press
<ENTER> to go on.

This is a 2 seated car so the next attribute (4) is also going to be 2. Press
<ENTER> to continue.

The last attribute (5) contains the year that this information is valid. For now
let’s assume it’s only valid for 1 year and enter 1991. Press <ENTER>.

We have completed entering data in this record, and we are now on line 6. To
exit Insert mode press <KENTER> on this blank line and you will be taken out
of Insert mode and back to the ----: prompt of the editor.

Type T<ENTER>. This command will take you to the top of the record.

Type PKENTER>, which will print out 20 lines (or as many are left in the
record) below where your cursor was on the screen. If you correctly entered
this first record you will see a printout like Figure 5.1 below.

To save this record in the file. type in FI and press <ENTER>.

Do steps 1 through 11 again for Record ID 2 and create a Ferrari, F40, 2
doors, 2 seats, and again 1991 for the year.

Top.

TR, p B B
0001: Lamborghini
0002: Diablo
oon3:- 2

oona: 2

oons:= 2001

Bottom at line 5.

Eclipse Programmers’ Manual Page 82

Exercise 5.3: Previewing Your Data

You now have two records inside your new file INLMANUAL.TEST).

1. To see these records type in LIST INL.MANUAL.TEST and you will see
these two records listed on the screen.

® You will see each ID, but you will not see the actual data inside the record.

2. To see the actual data you have a few choices. First let’s use LIST.ITEM. At
TCL type in LIST.ITEM INLLMANUAL.TEST and you will see both
records, but this time you will also see all data within each record. (See the
figure below.)

LIST.ITEM IHI.MAH.TEST 02:34:26pm 10 Jul 2001 PAGE 1

I
001 FERRARI
002 F40
og3 2
oo 2
oos 2001

1
001 Lamborghini
002 Diablo
on3 2
nng 2
ons 20M

3. Select the CT command (Copy to Terminal) with a * after the file name for a
second way to list everything in the file. This * tells the CT command that you
want everything in the file listed out. This command will look like the
following:

e CTINLMANUAL.TEST *

Page 83 Eclipse — Copyright — June, 2001

® You should see the results in the figure below.

HH) IHI.HAH.TEST 02:34:26pm 10 Jul 2001 PAGE 1

I
001 FERRARI
002 F40
og3 2
oo 2
oos 2001

1
001 Lamborghini
002 Diablo
on3 2
nng 2
ons 20M

4. If you wanted to see the information in only one of the records you can use
either the command CT or LIST.ITEM. Type command FILE RECORD
where command is either CT or LIST.ITEM.

5. FILE is the file you want to look at and RECORD is the record ID you want
displayed. Go ahead and do one of each command CT and LIST.ITEM on
Record 1.

® You will see very similar results with both commands. The only major
difference between the CT command and the LIST.ITEM command is
that the LIST.ITEM command will not display empty attributes inside the
record and the CT command will. Besides that difference, they are almost
interchangeable and you can use whichever command you prefer to view
data inside records.

Eclipse Programmers’ Manual Page 84

Exercise 5.4: Creating Dictionaries Using ED on Our New
File

Now we should create our dictionary items for this file, so we will remember how
we stored our data and so that programmers to come will be able to quickly find
what data lives where as well as add new attributes to this file.

1. Type in ED DICT INLMANUAL.TEST AUTO.MAKE.

¢ This command will put you into the record AUTO.MAKE in the
dictionary file for INLMANUAL.TEST. Because we created this file
through normal means, the actual dictionaries will live in
D_INLMANUAL.TEST.

e [f you ever want to see what file the dictionaries live in for a specific file,
type in CT VOC INLMANUAL.TEST. The VOC is where UniVerse
defines all files, master dictionaries, TCL Commands, UniVerse
subroutines, and PICK subroutines. I will not go into detail on the VOC in
this manual as all UniVerse documentation contains this information. The
dictionary file name will be the third attribute of this record if Attribute 1
is F for File. To see what I'm referring to go ahead and push a level (F2-
T) and type in CT VOC INLLMANUAL.TEST and you’ll see attribute 1
is F, Attribute 2 is your file name, and Attribute 3 is D_yourfile name.
Now <ESC> back to the Line Editor in step 1.

2. Enter Insert mode and put a D in Attribute 1.
3. Putina 1 in Attribute 2.

4. Leave Attribute 3 empty. By leaving it empty, though, you will have to put in
a space <ENTER> or you’ll leave Insert mode.

5. Fill in Automobile Maker in Attribute 4.
6. Enter 25L for Attribute 5
7. Enter S for Attribute 6. Leave Insert mode and save this record.

e Attribute 1 is the dictionary type (D), 2 is the attribute the data lives in the
file, 3 is the UniVerse conversion code, 4 is the dictionary description, 5 is
the length (25) and justification (L) of the attribute (this is for display
only), and 6 tells us if the attribute is Single (S) or Multi-Valued (M).

8. To quickly create the next 4 dictionaries let’s use a shortcut in the editor. Type
ED DICT INLLMANUAL.TEST MODEL DOORS PASSENGERS YEAR
and press <ENTER>

9. This command will put you into the line editor for the first record (MODEL).
Notice that we will edit each record in sequence, so once you FI the MODEL
dictionary the editor will take you into the next (in this case DOORS). Fill in
all of the correct information and save all of these dictionaries. Make sure that
the doors and passengers’ dictionary items are right justified, as they are
numbers.

Page 85 Eclipse — Copyright — June, 2001

10. To see all of the dictionaries you created type in LIST DICT
INLMANUAL.TEST and you will see a sorted list (by attribute) of every
dictionary on this file. That output should look very similar to the figure
below.

11. To end the edit session completely you will just press <KENTER>. Through
the last prompt of Record Name =, the editor asks if there were any other
records you wanted to edit after completing the active list.

DICT INI.MAMUAL.TEST 05:02:1é6pm 10 Jul 2001 Page 1

Field......... Type & Field.._..... Conversion.. Column....._._.. OQutput Depth %
Hame.......... Field. Definition... Code........ Heading........ Format Assoc..
Humber
GIN 1]] IHI _HAHUAL . TEST 10L 5
AUTO.HAKE] 1 Automobile Make 25L 5
r
DOORS 2 2
MODEL D F&d 5

%4 records listed.

Why are there 6 dictionaries in this list rather than just the 5 we created? Six
fictionaries exist because UniVerse uses the special dictionary @ID as the
“KEY” dictionary on every file. Every file must contain at least one dictionary in
the @ID, which will point to Attribute 0. This dictionary is actually pointing to
the record ID for each record inside of this file. As you know the final 5
dictionaries point to Attributes 1 through 5 of this file.

Now we have a complete file with a good listing of dictionaries telling us what
lives in each attribute of the file. It’s time to learn how to select certain pieces of
data out of the file. Before we do so let’s do one more quick exercise to get more
data in our test file.

Eclipse Programmers’ Manual Page 86

Exercise 5.5: Creating More Data in IN.MANUAL.TEST File

1.
2.
3.

12.

13.

Create 6 more automobile records in this file.

The record IDs will start at 3 and go up to 8 for these records.
The automobiles’ attributes will be the following:

e [Lamborghini, Countach, 2 doors, 2 seats, 1978

e Ferrari, Testarosa, 2 doors, 2 seats, 1983

e Porsche, 911, 2 doors, 2 seats, 1989

e Lotus, Esprit, 2 doors, 2 seats, 1985

e Porsche, Boxster, 2 doors, 2 seats, 2001

* Dodge, Viper, 2 doors, 2 seats, 1997

You should now have a total of 8 records in this file, with record IDs 1
through 8. Perform a LIST.ITEM on the file to make sure you are happy with
the data.

ED one final record with record ID 10.

Put in Ford on line 1.

Type Mustang on line 2.

Type 2 on line 3.

Type 8 on line 4. (Yes. Make this 8 on purpose!)

. Type 2001 on line 5.

. Exit Insert mode. Notice we made an error in Attribute 4. The Mustang only

has 4 seats.

Type in 4 <ENTER> to jump to line 4 and type in R/8/4<ENTER>. This
command tells the editor you want to replace the character 8 with the
character 4 on this line.

The other way we could have completed this command is to enter R
4<ENTER>. This command tells the editor to replace everything on this line
with the string following the space.

@

Note: If you ever make a mistake in the Line Editor (and are not in Insert mode)
you can type OOPS<ENTER> to back out of that latest change you made. If you
want to abort the entire edit session use Q<ENTER> to quit without saving the
changes to that record.

14.

Go to the top of this record and make sure the data is now correct for the
Mustang. Save the record.

Page 87 Eclipse — Copyright — June, 2001

=

o
Tip: You can also insert a line in the Line Editor with data and not have to go all

of the way into Insert mode. You can perform this action by putting your cursor
on the line you want to insert data into and type I DATA<ENTER>, which will
enter DATA on the line you had your cursor on without putting you into Insert
mode. You can delete lines in the editor by using the D option with your cursor on
the line you want deleted. Finally, you can delete a record by using the FD option
instead of FI to exit the record.

Exercise 5.6 — Counting Records in a File Without Using the
LIST Command

One thing that can be useful when working with a file is knowing how many
records you’re dealing with. We can accomplish this task by using the COUNT
command. This command goes out to the file and counts how many records are in
it. Let’s find out how many records we have in our INL.LMANUAL.TEST file.

1. Go into Eclipse TCL (F2-T).
2. Type in COUNT INLMANUAL.TEST and press <ENTER>.
3. You will receive a message back displaying “9 records counted.”

That’s all it takes to count records! Unfortunately on a large file this action could
take a few minutes to count each record. In Eclipse TCL we have given you a
hotkey (ALT-X) that let’s you execute the TCL command in the phantom
(background) so that while this command is being executed you can go do other
things. This action is also very handy in the next section for selecting information
out of the file.

®

Caution: While everything in Eclipse TCL gets converted to uppercase and thus
seems case insensitive TCL is truly case sensitive. When executing a command in
the phantom be sure the case is correct or the command will not be performed as
you expect.

Exercise 5.7: Execution of COUNT in the Background
1. Go into Eclipse TCL.
2. Type in COUNT INLMANUAL.TEST.
3. Press ALT-X.
4. Answer “Y” to the “Execute Command in Phantom” prompt.
5

. You will see “Phantom process started with process ID xxx” on your
screen.

6. As soon as this command is complete, you will get an Eclipse message “From
Phantom: 9 records counted.”

Eclipse Programmers’ Manual Page 88

In the above exercise, we did not save much time running this task in phantom
because counting 9 records takes little time anyway. However, if I wanted to see
how many order records were out in a system, this command comes in very
handy.

Another nice feature of Eclipse TCL is the command “stack”. This command
keeps track of the last 100 commands you executed in Eclipse TCL. You can
easily access those commands using your arrow keys (Up Arrow goes up the
stack and Down Arrow goes down the stack) or by using the ALT-P (Previous
Commands) hotkey. Let’s explore this a little further.

Exercise 5.8: Command Stack in Eclipse TCL

1. Go into Eclipse TCL.

2. Type in COUNT INLMANUAL.TEST and press <ENTER>.
3. Type in LIST INLMANUAL.TEST and press <ENTER>.
4

. Now press the Up Arrow key one time. Notice that it will fill in the TCL
prompt with your last command “LIST INLMANUAL.TEST”. You can
either press <KENTER> to submit this command again, change the command
around if you had a typo, or Up/Down Arrow to move to different
commands.

5. If you wish to change a command in your stack before resubmitting, be sure
you do not start typing in the first character or you will end up overwriting the
entire command with your new characters. If you need to edit the first
character, press the Right Arrow and Left Arrow to navigate and then type
in your changes.

6. You can also use the <END> key to quickly jump to the end of the command
and make changes there.

7. Play with your command stack for a few more minutes (In Eclipse TCL) and
let your training manager know if you have any questions.

We now know how to create a file, create dictionaries, see all the records in a file,
see all of the data in the records in the file, and see all of the dictionaries in a file.
The next step is to be able to select data out of our file. There are 3 commands we
will use to select data out of our file. The first two are SELECT and SSELECT.
The only difference in the two commands is that SSELECT will sort the IDs
before returning the select list. The third command we will look at is SORT,
which behaves a little differently than the other two.

Exercise 5.9: Selecting Specific Records out of a File in TCL

Let’s start by saying we only want to see those records in our file that were made by
Lamborghini. How would we do this? It’s actually very simple in the UniVerse Database
using the SELECT command.

1. Getinto Eclipse TCL.
2. Type in UL and press <ENTER>.

Page 89 Eclipse — Copyright — June, 2001

T

{0
A

a3
Note: This command let’s us use lower and upper case in Eclipse TCL. If you do
not run this command, the SELECT will fail because we did not enter
“Lamborghini” in all uppercase in the database. As the above Caution stated, all
of these TCL commands are case sensitive. We convert everything to uppercase in

Eclipse TCL to make your life easier most of the time.

3. Type in SELECT INLMANUAL.TEST WITH AUTO.MAKE =
“Lamborghini”.

4. If you didn’t make any typing errors, you will get the message “2 record(s)
selected to SELECT list #0.”

This message is telling you that your “active” list of record IDs now contains two
IDs. A benefit with a normal UniVerse SELECT (like we just did) is that it does
not store any record information with the IDs. Instead it stores only the IDs
themselves. If I have related files with the same IDs, I can select off one and then
go back and get the data out of another. We will look more into this function at a
later time. The important thing to know about your active list is that while you
have it active, every command you execute will only execute off that list of IDs.
Let’s try an example.

Exercise 5.10: Selecting Records from an Active List

1. Type in SELECT INLLMANUAL.TEST WITH AUTO.MAKE =
“Porsche” and press <ENTER>.

2. You will get returned the message “0 record(s) selected to SELECT list #0.”

3. This message is displayed to demonstrate that the only records the second
SELECT looked at were the two we had in our active select list.

4. Repeat Step 4 in the previous exercise to get only the Lamborghini’s record.
5. Now press ALT-C hotkey to clear out your selected list.

6. Repeat the Porsche Selection and you will now receive the message “2
record(s) selected to SELECT list #0.” This message appears to tell us that,
before our second selection, we cleared out our active list of record IDs. You
can also clear this active list by executing a LIST command on the select list.

7. With this list still active run a LIST INL.LMANUAL.TEST and you will see
records 5 and 7 listed on your screen. These were the two records we created
for Porsche.

8. Execute Step 4 from the previous exercise again, and then run a LIST.ITEM
INLLMANNUAL.TEST. You will see results similar to those in Figure 5.1
with record IDs 1 and 3 displayed and their data below.

So in review, the SELECT statement find records within a file that match the
criteria defined after the WITH clause. If you need more than one piece of data
you can use the AND/OR clause to specify conditional statements that must be
met to select out the records.

Eclipse Programmers’ Manual Page 90

Exercise 5.11: Using the AND, OR and Wild Card Clauses in the

SELECT Statement
1. Go into Eclipse TCL.
2. Type in SELECT INLMANUAL.TEST WITH AUTO.MAKE =

“Lamborghini” OR WITH AUTO.MAKE = “Porsche” and press
<ENTER>.

You will receive the message “4 record(s) selected to SELECT list #0.”

Do a LIST.ITEM on this list and see what records were selected from the
file. You will see that all records that had either Lamborghini or Porsche in
attribute 1 are now in this active list of record IDs.

Type in SELECT INLMANUAL.TEST WITH AUTO.MAKE =
“Porsche’” AND WITH MODEL = “Boxster” and you will receive the
message “1 record(s) selected to SELECT list #0.”

Use LIST.ITEM or CT to see what record was selected and you will see it
was record ID 7. The record for the Porsche Boxster came up on the screen
because we told the select we only wanted records that were made by Porsche
and had the model Boxster.

We can also use what is called the implicit OR within the SELECT
statement. To do this let’s make the same selection as in Step 2 but without
the second OR WITH clause. Just type in SELECT INLMANUAL.TEST
WITH AUTO.MAKE “Lamborghini” ‘“Porsche” and press <ENTER>

You will receive the message “4 record(s) selected to SELECT list #0” and
you will see that they are the exact same record you selected in Step 4.

@

Note: If you don’t put the AND/OR in between dictionaries, then you have an
implied OR in the dictionary before the values.

9.

10.

1.
12.

Wild card characters also exist in the SELECT values. They allow you to
select all records that have an auto maker starting with an “L” or all records
that have an “L/I” anywhere in the record.

To do the first selection (all records with attribute 1 starting with an “L”) type
in the following: SELECT INLMANUAL.TEST WITH AUTO.MAKE =
“LJ]”. You will get 3 records: the two Lamborghini records and the one Lotus
record.

[P

Let’s select anything ending in an “e

Type in SELECT INLLMANUAL.TEST WITH AUTO.MAKE = “[e” and
press ENTER.

Page 91 Eclipse — Copyright — June, 2001

13. You will get 3 records in this list: two for the Porsche records and one for the
Dodge (they all end in e). So the wild card characters are the “[** and the],
where the “[* tells us we do not care what the string starts with and the “]”
tells the SELECT we do not care what the string ends with. You can also use
these characters together in the SELECT command.

14. Let’s select anything with the letter “s” in the auto make. Type in the
following:

e SELECT INLLMANUAL.TEST WITH AUTO.MAKE = “[s]” and you
will get three records: two for the Porsche and the one for the Lotus. You
don’t have to use only one character with these wild cards. The strings can
be as long as you need them to be.

15. If we wanted to save this list of record IDs for later reference we can now use
the SAVE-LIST command. This will save this list of record IDs out to the
&SDAVEDLISTS & file where we can edit the list of ID (EDIT-LIST) or
retrieve the list back into our active list using GET-LIST with the list name.
Save this list off to INI1 (SAVE-LIST INI1).

16. Edit this list using EDIT-LIST INI1 and press p <ENTER>. You will see the
three record IDs we selected.

17. Quit the edit session.
18. Retrieve this list back into your active list by using GET-LIST INII1.

19. Run LIST.ITEM INLLMANUAL.TEST to see that you are again looking at
these three records. These last few steps are again important time savers when
working on large files. You could have performed the initial SELECT in
phantom (ALT-X), gone to work on other things, saved the list once it was
selected, done some more research, and then never have to re-do this large
select.

=

o
Tip: Another nice thing about Eclipse TCL is that it also does automatic SAVE-

LISTS every time you select data out. You can see these automatically saved lists
by pressing the ALT-L hotkey in TCL. To re-activate a list just highlight it and
press <ENTER>. This list will now be your active list. This command is helpful if
you forgot to save a list or made a mistake in the secondary selection. You can

use it to get back to the initial lists.

So we can easily select out just about any records from a file with the SELECT
statement and dictionaries defined on that file. As we also saw UniVerse creates
what we call an active list of the record IDs that we selected out of this file. We
can then further select off that active list or use that active list to find which
records were selected from our statement, and we can use wild card and
conditional statements to further enhance our selection capabilities.

Eclipse Programmers’ Manual Page 92

The final capability we will discuss in this lesson is the sorting of records after
selecting them. This capability allows us to display records in a logical manner
rather than in the order they were hashed into the file. We can still use the
SELECT statement, but we can also use the SSELECT statement. The only
difference in the two statements is that SSELECT will sort the records by record
ID before we have set up any secondary criteria. This command can be an
advantage if we need the records sorted by record ID. However, if we want the
records sorted in any other way, this command is just an additional overhead on
the system. For this reason we will continue using SELECT. Know that
everything we do in SELECT would work exactly the same using SSELECT.

Exercise 5.12: Sorting Records within a File/Select List
1. Go into Eclipse TCL.

2. Type in SELECT INLLMANUAL.TEST WITH AUTO.MAKE = “L]” BY
AUTO.MAKE.

3. You will get three records. This time run LIST.ITEM on these records and
see that the two Lamborghini records are sorted to the top and the Lotus is
listed last. Our BY clause tells the SELECT statement that we want the final
list in ascending AUTO.MAKE order.

4. Type in SELECT INLMANUAL.TEST BY AUTO.MAKE.
5. Type in LIST INLMANUAL.TEST AUTO.MAKE MODEL.

6. You will see the results in the first figure below.

=

o
Tip: With the LIST command, you can show more than just the record IDs by

entering the dictionary IDs you want displayed after the file name that you
entered. If you didn’t want to see the record IDs, you could type LIST
INIMANUAL.TEST AUTO.MAKE MODEL (1. This command tells UniVerse
not to display the internal record IDs on the screen — See the second figure below.

7. You can also sort by more than one field by putting in more than one BY
clause. Type in SELECT INLLMANUAL.TEST BY AUTO.MAKE BY
MODEL and you will receive a sorted list with the auto maker as the primary
sort by. Next you will see a list sorted by the model as the secondary sort by.

8. We can also sort in descending order by using the BY-DSND clause. Type in
SELECT INLMANUAL.TEST BY-DSND AUTO.MAKE and you will
receive a sorted list with the highest auto maker value at the top of the list.

Page 93 Eclipse — Copyright — June, 2001

LIST THT.HAHUAL.TEST AUTO.HAKE HODEL D%:1&6:Z&pm 10 Jul ZOOT FAGE 1
IHI.MAHUAL.TEST Automobile Maker.........

Dodge Dodge
Ferrari Ferrari
IHI.MAHUAL.TEST Ford

I Lamborghini
Lamborghini Lamborghini
Lotus Lotus
Porsche Porsche

7 records listed.

LTST THT _HAHUAL . TEST AUTO_MARE MODEL TD-SOPFF 05:1%:37pm 10 Jul 7007 FAGE i
Automobile Maker.........

Porsche
Lotus

Dodge

Ford
Lamborghini
Lamborghini
Ferrari

7 records listed.

The final command I would like to look at in this lesson is the SORT command.
The SORT command let’s you SELECT, SORT, and LIST records within the
file all in one command. The drawback to the SORT command is that you cannot
use it within a program or run it in phantom; it relies on putting the final listing on
the screen.

Exercise 5.13 — Using the SORT Command in TCL
1. Go into Eclipse TCL.
2. Type in SORT INLMANUAL.TEST BY AUTO.MAKE.

3. You will see a list of record IDs sorted in order of the AUTO.MAKE file
(attribute 1).

4. Type in SORT INLLMANUAL.TEST BY AUTO.MAKE AUTO.MAKE.

5. This time you will see the same sorted IDs, but you will also see the
AUTO.MAKE field displayed next to the IDs on the screen

6. Type in SORT INL.LMANUAL.TEST BY AUTO.MAKE BY MODEL
AUTO.MAKE MODEL.

7. You will see a list sorted by maker, model, or IDs.

8. Type in SORT INLMANUAL.TEST WITH AUTO.MAKE = “L]” BY
AUTO.MAKE BY MODEL AUTO.MAKE MODEL and you will see only
the records that have attribute 1 starting with “L” sorted by maker and by
model on the screen.

9. If you want to hide the record IDs you can still use the “(I switch on the end
of the” command. You can still sort in descending order by using the BY-
DSND clause as in the SELECT statement.

Eclipse Programmers’ Manual Page 94

Summary

In this lesson you learned how to create UniVerse files, and you learned about the
different types of files that we use at Eclipse. You also learned how to properly
size the files, how to create and edit records within a file, how to manually create
dictionary items for a file, how to read a VOC entry for a file, and how to select
and sort information from a file. This lesson is an important step in learning the
PICK programming language, as most of what you do at Eclipse will require
interacting with the database in some way. So far we only created a two-
dimensional file. We will expand on this topic in the lessons to come in order to
find the advantages of our database over all of the relational databases of the
world.

Assignments: Lesson 5

1. Explain the steps necessary in creating a file in detail. Explain what to look
for when deciding the initial type and size of a new file in a word document.
Email this assignment to your Training Manager.

2. Select all of the records in your INLMANUAL.TEST that have a model
containing a “t” anywhere in it. Save the list to a list named INI2 and show
your training manager these steps.

3. Using two different methods, get a sorted list of autos from our new database
by maker, by model, by cars that have 2 seats. Display the maker, model, and
year of the automobile on the screen.

Page 95 Eclipse — Copyright — June, 2001

Lesson 6

Retrieving and Saving Data from a
Program in Universe

(eclipse

Objectives

In this lesson, you will learn to:
e Use both dynamic and dimensioned arrays

e Retrieve information from arrays
e Write information into arrays

Eclipse Programmers’ Manual Page 96

Overview

In the previous lesson, you learned the definitions of file, record, and attribute
within the UniVerse database. We discussed selecting records out of a file by
using dictionaries that define structures of records in files. We also looked at
manually creating, changing, and saving information within each of these records.

Such manual work is a tedious process, but, as programmers, our task is to enable
users to create, edit, and save information within a record. The following glesson
discusses how to complete this task.

In this lesson, you will learn numerous ways to retrieve and save data within the
UniVerse BASIC language. You will cover the following two different types of
arrays and what they do for us:

¢ Dynamic

¢ Dimensioned

Retrieving Data from a Record into a Dynamic Array

In the following exercise, you are introduced to the SHOW function, READ
statement, dynamic arrays, and the OPEN statement. You will retrieve the
information needed for this exercise from our IN.MANUAL.TEST file and
display the record on the screen.

The OPEN statement is used to give our program access to the file from which we
want to read data. The OPEN statement is not complicated to write in a program,
but it is expensive for the operating system to run.

The OPEN statement stores the file header information in a variable called the file
handle. The file handle variable enables our program to read and write from the
file.

The READ statement is used to read data into the file from a record. The SHOW
statement is used to display the contents of a record’s variable.

Page 97 Eclipse — Copyright — June, 2001

Exercise 6.1: Retrieving Data from a Record into a Dynamic

Array

1.
2.

In develop, create a new program in UBP. Name it INLDYN.READ.

Generate comments on the top of the routine that indicate the program reads a
record into a dynamic array and displays the information on the screen.

Insert the OPEN “INLLMANUAL.TEST” TO TEMPFILE ELSE
RETURN directly after the comments in order to use the
INLMANUAL.TEST file in this routine:

e [f UniVerse is unable to open INLMANUAL.TEST, it executes the ELSE

clause.

e UniVerse is unable to open INLMANUAL.TEST if the file no longer
exists or if the file has permissions that keep this process from using it at
the OS level. If UniVerse successfully opens the file, a THEN clause in
the OPEN statement is executed. In this exercise, you will assume the file

can be opened.

Enter READ AUTO.REC FROM TEMPFILE, 1 ELSE AUTO.REC = ‘.

e This command instructs the routine to read in Record ID 1 from the file.

¢ The READ command is broken into the following parts:

Part Definition

Command

The command itself.

For example: READ

Dynamic Array

The dynamic array you want applied to the record for this
program.

For example: AUTO.REC.

FROM Statement

The file handle, a comma, and the Record ID.

For example: FROM TEMPFILE, 1

Exception Clauses

e THEN is executed if the record is found in the file.

e ELSE is executed if the record is not found in the file. If
you do not include an ELSE statement and the record is not
found in the file, an error message stating the variable is
Undefined occurs at run-time.

Eclipse Programmers’ Manual Page 98

5. Enter SHOW AUTO.REC to display the contents of the variable on the
screen.

e The SHOW function takes up to 10 arguments and displays them in a separate
window. The window displays an instruction for the user to press RETURN
in order to continue.

e Use SHOW for debugging a subroutine. You can also use it to display
variable values at key points within a routine.

Caution: A program containing a SHOW statement cannot be closed with the
Eclipse Program Editor.

o
Tip: If you use SHOW in a subroutine that can affect other users, pass an

asterisk (*) and your User ID in the first argument of the SHOW call. This
action displays the SHOW only for you.
For example: SHOW “*User.ID”, AUTO.REC

6. Enter RETURN on the next line to return control to our calling subroutine.

7. Save, compile, and run the routine from the program editor. You should see
the same results and listing as below:

Run Subroutine Program: JTS.DYM.READ

PRSSER.

Lamborghini*Diable*2*2"1991

Press <RETURH> to continue :

Page 99 Eclipse — Copyright — June, 2001

Listing 6.1: IN.LDYN.READ

SUBROUTINE (PASSER)
. ®* Version# 0.01[1] - 07/31/2001 - 02:28pm - JASONS - develop

: **% Subroutine : JTS.DYN.READ

ES *

: *** This subroutine will read in record ID "1" from the JTS. MANUAL.TEST
. *** file and display the contents on screen to the user.

* *

: *** PASSER is not used in this subroutine.

*

}(1) *** No Common variables are used in this routine.

*##% Open the JTS.MANUAL.TEST file for use in this subroutine.
OPEN JTS.MANUAL.TEST' TO TEMPFILE ELSE RETURN

**% Put the contents of record ID "1" in the JTS.MANUAL.TEST file
**% into the variable AUTO.REC making it a dynamic array. If the
**% file doesn't contain record ID "1" make the variable equal

*%% an empty string.

READ AUTO.REC FROM TEMPFILE,1 ELSE AUTO.REC =""

*#% Display the contents of AUTO.REC variable to the user using
**% the Eclipse function SHOW. This function will let the user

*#% hit <RETURN> before closing the window and returning control
*¥% to here.

SHOW AUTO.REC

. RETURN
30.1JASONS~07/31/01~14:28

Why we use Dynamic Arrays

From this example, you notice that you access a file stored on a disk by:

1. Using the OPEN statement to open the file to a file handle variable.

2. Using the READ statement to put the file’s record into a dynamic array.

If you are familiar with programming, you might wonder how a variable can be
an array without indicating how big the array is. In PICK you do not need to
indicate how big a dynamic array is. A dynamic array adjusts its size to the data
put into it. By using dynamic arrays you do not need to worry if the array is large
enough to handle the data.

Dynamic arrays are long strings. For example, when you printed the entire string
on our screen by entering PRINT DYN.ARRAY, it compiled and ran without
any errors. Although ” characters displayed where the attribute marks
(Char(254)) appeared, everything else looked like a string. You could have
changed " to ~ and then written your own subroutines to parse the string.
UniVerse already parsed the string for you, though, so keep these delimiters.

Dynamic arrays’ storage in memory is a drawback. Because dynamic arrays are
long strings, accessing the elements within them becomes slower as the strings
grow.

Eclipse Programmers’ Manual Page 100

o
i
s

Note: Do not use your own delimiter instead of AM, VM, SVM in the dynamic

array. UniVerse has special caching logic so the retrieval of strings from a

dynamic array attribute is faster than parsing our own delimiters.

e

Accessing One Element of a Dynamic Array

To access one element of a dynamic array, place the <> characters around the
element you want to access. For example, for a dynamic array variable named
DREC, you access just the first attribute by using the following syntax:

DREC<1>

If you want to place this dynamic array into another variable called
FIRST.ATTB, use the following syntax:

FIRST.ATTB = DREC<1>

This syntax takes the first attribute of the dynamic array DREC and places it into
the new variable FIRST.ATTB. If DREC<1> has multiple values within the
attribute (separated by value marks, sub value marks, and so on), the syntax
places them into FIRST.ATTB, as well. To access the first attribute and its first
value, use the following syntax:

FIRST.ELEM = DREC <1,1>

To access the second value position for the first attribute, use the following
syntax:

FIRST.ATTB.SECOND.VAL = DREC <1,2>

To access the second sub value from the third value in the fifth attribute, use the
following syntax:

NEW.VAR =DREC <5,3,2>

Note: If further dimensions within the dynamic array exist, you must use the
RAISE command in conjunction with multiple assignment statements to access
those further dimensions. PICK only supports three dimensions in the dynamic
array syntax. You will learn this in a later lesson.

Page 101 Eclipse — Copyright — June, 2001

Exercise 6.2: Accessing Elements in a Dynamic Array

In this exercise, you will access specific elements of the dynamic array. Take the
model of the car that you pulled from the INLMANUAL.TEST file, record ID 1.

1. Create a new subroutine and name it INLDYN.ACCESS.

Open the INLMANUAL.TEST file.

Read Record ID 1 from the file into a dynamic array.

Place the second attribute from your dynamic array into a variable called MODEL.
Open a blank window and display the model of this car on the screen for 5 seconds.

Close the window.

e A L T o R

Return control to the calling routine. You should see the output Diablo on the screen.

You should see the same listing as below.

Listing 6.2: INLLDYN.ACCESS

SUBROUTINE (PASSER)

. *** Subroutine : JTS.DYN.READ
* *
. #** This subroutine will read in record ID 1 from the JTS.MANUAL.TEST file
. ®*% into a dynamic array and then access attribute #2 (Model) and display
. ¥% it on a blank screen for 5 seconds.
* *
. *#*# PASSER is not used in this routine.
10. *
. ¥#* COMMON VARIABLES:
. *** None are used in this routine.
* *k

OPEN 'JTS.MANUAL.TEST' TO JTSFILE ELSE RETURN

. #** Read in record ID 1 from the JTS.MANUAL.TEST file into the dynamic
. #* array AUTO.REC.

ID =1

READ AUTO.REC FROM JTSFILE,ID ELSE AUTO.REC ="

. **% Pull the model of the car from attribute #2 of this dynamic array.
MODEL = AUTO.REC <2>

. ¥*¥*Open a blank window and display what we got out of attribute 2.
WINDOW

PRINT @ (10,2):MODEL
SLEEP 5

WINDOW.CLOSE

RETURN

Eclipse Programmers’ Manual Page 102

Introduction to READYV for Accessing Single Attributes

You have learned how to open a file for access, read data from an entire record
into a dynamic array, and access elements from that dynamic array. You have also
learned that PICK treats all variables as strings until you change them, such as a
mathematical operation, a file open, or a dimension for dimensioned arrays.

In this section, you will learn how to speed up the read time (as READ/Retrieves
of large records are expensive) for the program.

If you need to access only one or two attributes from a record within the file,
UniVerse provides the READV command. This command instructs the system to
go out to the file for one record and access one attribute of that record. It then
places that attribute into the dynamic array. In Exercise 6.2, you could have used
READV to accomplish the code instead of reading the entire record. Using
READYV would have been more efficient.

Break the READV statement into the same parts as you did with the READ
statement in Exercise 6.2, except enter the attribute number after the record ID.
Make file handle TEMPFILE read in only the second attribute from record ID
JASON into a variable called SECOND.ATTB. Use the following syntax:

READYV SECOND.ATTB FROM TEMPFILE,”JASON”,2 ELSE
SECOND.ATTB = ¢’

The READYV statement has the same clauses as the READ statement for THEN
and ELSE.

e The THEN statement is executed when the record is found in the file.

o The ELSE statement is executed when that record is not found in the file.

Page 103 Eclipse — Copyright — June, 2001

Exercise 6.3: Changing INI.LDYN.ACCESS to READYV Instead of

READ
1.
2.

3.
4.

In the Program Editor, pull up INLDYN.ACCESS.

Change the READ into AUTO.REC command to a READV in your model
variable command.

Display the MODEL on the screen for five seconds.

Run this updated routine. You should see the same results as in Exercise 6.2.

You can also use the READV command in checking for a record in a file.
UniVerse allows you to use attribute O as the attribute piece of READV. This
command tells Eclipse to look only in the hash table rather than accessing data
from disk, which makes this command quick to execute.

Exercise 6.4: Creating IN. READV.TEST
1. In UBP, create a new routine named IN.LREADV.TEST.

ARSI

This routine will access the year attribute of record ID 1 and record ID 4, and
display them on the screen.

Create the correct comments in the header of this routine.

Use READYV to access the year of the cars in Records 1 and 4.

Display both of the years on the screen simultaneously for five seconds.
Return control to the calling routine.

Compile and run this routine. You should see the output 1991, with the output 1983

below 1991. You should see the same listing as below:

Eclipse Programmers’ Manual Page 104

Listing 6.3: INLREADV.TEST

SUBROUTINE (PASSER)
. F¥ Version# 0.01[1] — 08/14/2001 — 7:06pm — JASONS - develop

. *#*% Subroutine : JTS.DYN.READ

*k %k

. #** This subroutine will read in the year that the cars in record ID 1 and
. ¥*#*% record ID 4 from the JTS.MANUAL.TEST file (attribute 5) and
. ¥¥* both years on the screen for 5 seconds. It will then close this window
. **% and return control to the calling routine.
10. * *
. % PASSER — This argument is not used in this subroutine.
* *
. ¥#%* COMMON VARIABLES:
. **#*% None are in this routine.
* *

OPEN 'JTS.MANUAL.TEST' TO TEMPFILE ELSE RETURN

WINDOW

. **% Read in the year the car in record ID 1 was made (attribute 5)
READV YEAR1 FROM TEMPFILE,1,5 ELSE YEAR ="
READV YEAR2 FROM TEMPFILE 4,5 ELSE YEAR2="

PRINT YEARI
PRINT YEAR2

SLEEP 5
WINDOW.CLOSE

RETURN

You now know two different ways to access data from a record in a file on disk:
1. READ command
2. READV command

Use the READ command if you are looking for more than two attributes from the
record. Use the READV command if you are only looking for one or two
attributes from the record. If a record is large and you need only a few pieces of
information, use up to three READV commands in place of the READ command.
If you used the READ memory access command, you would then have to access
the information from the dynamic array.

Page 105 Eclipse — Copyright — June, 2001

Using Dimensioned Arrays to Access Data in UniVerse

Dynamic arrays are strings with special delimiting characters to separate out data
elements. With dynamic arrays, you do not need to estimate the size of the array;
it can be as large or small as needed. As dynamic arrays become larger, drawing
elements out of it becomes inefficient. Use dimensioned arrays to access elements
of large records more efficiently.

Dimensioned arrays allow us to pre-allocate space in which to store elements so
that access time becomes quicker. To use dimensioned arrays, indicate to
UniVerse that a special variable of a defined size is needed. UniVerse pre-
allocates pointers to each element of the dimensioned array. You can now access
element 50 as quickly as element 1. The elements are stored in memory. They can
include 50 or 150 elements in a dimensioned array and still be accessed quickly.

With dimensioned arrays, you should be cautious with the amount of space pre-
allocated. If you pre-allocate too much space, you waste memory. If you pre-
allocate too little space, you inadvertently place data in overflow. Using
dimensioned arrays also makes accessing and writing to the disk longer. The
system must parse each element, rather than placing the entire record into
memory as with dynamic arrays.

Dimensioned arrays are commonly used for large records. Most of the
dimensioned arrays are already defined in the users COMMON memory section.

To set up a dimensioned array, use the DIM statement followed by the variable
name you want to assign the array. For example, for a dimensioned array named
MY .DIM.ARRAY, use the following syntax:

DIM MY.DIM.ARRAY(ELEMENT COUNT)

The ELEMENT COUNT represents the number of elements to pre-allocate for
the array.

To access a record from disk and place into a dimensioned array, use the
MATREAD statement rather than the READ statement. To read data into the
variable MY.DIM.ARRAY from the TEMPFILE handle record ID 1, use the
following syntax:

MATREAD MY.DIM.ARRAY FROM TEMPFILE,1 ELSE
MAT MY.DIM.ARAY = ¢
END

Because youe break the ELSE clause onto a second line, you need to place the
END statement after the last command within the ELSE clause.

@

Note: For the ELSE clause, you cannot use the syntax MY.DIM.ARRAY = .
Instead you need to enter MAT MY.DIM.ARRAY = . This syntax tells UniVerse
that you want it to make every element of the dimensioned array an empty string if
the record does not exist in the file. If you forget to include MAT and then try to
compile this routine, the compiler forces you to indicate an element of that array.
Because a dimensioned array is not a long string, you must always tell UV on
which element to work.

Eclipse Programmers’ Manual Page 106

Exercise 6.5: Using INIL.DIM.ACCESS to Access Elements
through a Dimensioned Array

1.

Create a new subroutine named INLLDIM.ACCESS. Ensure that this array
accepts only one argument PASSER, which will not be used.

This subroutine reads in record ID 1 from the INL.MANUAL.TEST file and
finds what data is stored within attribute 2.

Make sure that the top comments are correct and complete.

Dimension an array named AUTO.REC to five elements. Use the following
syntax:

DIM AUTO.REC(S)

Note: We used 5 in this case because we know that we have five attributes
defined in the dictionary for this file layout. Always try to dimension arrays to
the correct size and larger to avoid re-dimensioning them each time we add
an attribute to the file structure. Do not make it too large or you waste
memory.

. In the dimensioned array, read the data from record ID 1.
. Access the second attribute into a variable named MODEL.

4
5
6.
7
8

Close the window.

. Return control to the calling routine.

. Compile and run this routine.

You should see the same listing as below.

Page 107 Eclipse — Copyright — June, 2001

Listing 6.4: INL.DIM.ACCESS

SUBROUTINE (PASSER)
** Version# 0.01[3] - 09/14/2001 - 12:01pm - JASONS - develop

**% Subroutine: JTS.DIM.ACCESS

*k *k

This subroutine will read in record ID 1 from the JTS. MANUAL.TEST file
%% into a dimensioned array, access attribute #2 (Model) and display

*#% it on a blank screen for 5 seconds.

* *

PASSER is not used in this routine.

k

**% COMMON VARIABLES:

*** None are used in this routine.

* *

OPEN 'JTS.MANUAL.TEST' TO JTSFILE ELSE RETURN

O 001NN B W

*** Dimensioned array we will be putting the automobile information into.
DIM AUTO.REC(5)

##% Read in record ID 1 from the JTS.MANUAL.TEST file into the dimensioned
*#** array AUTO.REC.

ID=1

MATREAD AUTO.REC FROM JTSFILE,ID ELSE MAT AUTO.REC ="

*%% Pull the model of the car from attribute #2 of this dynamic array.
MODEL = AUTO.REC(2)

% Open a blank window and display what we got out of attribute 2.
WINDOW

PRINT @(10,2):MODEL
SLEEP 5

WINDOW.CLOSE

RETURN
IJASONS~09/14/01~12:01

In a dynamic array, in order to access this variable more than once, it is more
efficient to place the data into the variable MODEL. Otherwise, the system must
scan to that attribute for the special string.

With dimensioned arrays, it is not as efficient to place the data into the variable
MODEL. In a dimensioned array, each element of the array has its own memory
space. Accessing element 1 and element 50 takes the same amount of time, as
does accessing a single variable. You use dimensioned arrays because they are
more readable.

In the above exercise, you did not need to put the second element into the
MODEL variable. Instead you could have displayed AUTO.REC(2) on the
screen. Many cases exist where this small inefficiency makes little difference and
the added readability improves the code. In these cases, it is better to put the
element into a variable that is easier to read rather than programming to know
what lives in element (2).

Eclipse Programmers’ Manual Page 108

You should use the ;* commenting standard when using AUTO.REC(2) to keep
the efficiency of the code and still let other programmers know what is stored in
AUTO.REC(2). To use this commenting standard, follow the syntax below:

PRINT@ (10,2):AUTO.REC(2) ;*Model of the automobile

Place the semicolon (;) immediately in front of the asterisk (*) and place one or
more Tabs between the 2 statements. Place the Tab to make it easier to reach this
position if you need to change the comment. The Tab also allows you to line up
all of your comments as you place equal (=) signs. If there is more than one line
of code, you can quickly scan the comments. See the format below:

PRINT AUTO.REC(2) ;*Model of the automobile
PRINT AUTO.REC(3) ;*Number of doors in this automobile
PRINT AUTO.REC4) ;* Number of passengers in this automobile

Using Dynamic Arrays to Update Record Images on Disk from
a Program

You have learned three different ways to access data from a file within an Eclipse
program. Now you will learn about updating the data in a file from a program. As
a programmer, you need to allow users to view and edit Eclipse applications, as
well as place those edits back into the database. We must also ensure that, when
users edit records, they are the only users allowed to make changes at that time.

To place a dynamic array back into the record/file on disk, use the WRITE
statement. The WRITE statement is broken down similarly to the READ
statement.

Segment Definition
Command The command itself.

For example: WRITE

Dynamic Array | The dynamic array you want applied to the record for
this program.

For example: AUTO.REC.

ONorTO The file handle, a comma, and the Record ID.
Statement For example: ON TEMPFILE, 1

Possible e THEN is executed if the record lives in the file.
Exception

¢ ELSE is executed if the record is not found in the
file. If you do not include an ELSE statement and
the record is not found in the file, an error
message stating the variable is Undefined occurs
at run-time.

Clauses

Page 109 Eclipse — Copyright — June, 2001

For example, use the following syntax to write out the AUTO.REC dynamic
array:

WRITE AUTO.RECON JTSFILE,ID

This syntax takes the information in the AUTO.REC dynamic array and places it
in the record ID of the JTSFILE.

Exercise 6.6: Creating a New Record in the INL.MANUAL.TEST
File from a Program

1. Add a new automobile to our file. Make the record ID 11. The car is a Jeep
Wrangler, year 1997, 2 doors, and 4 passengers. Name this subroutine
INLDWRITE.TEST.

2. Open the file for use to the TEMPFILE file handle.

3. Initialize the dynamic array AUTO.REC to “’ using the following syntax:
AUTO.REC = ¢

Load the data into the correct attributes for this dynamic array.

Use WRITE to put this data onto disk with record ID 11.

Return control to the calling subroutine.

Compile and run this routine.

Use LIST.ITM or CT and TCL to verify the data loaded correctly. Check the
listing below.

© N e

9. If it did not load correctly, recheck steps 1-6 and see your training manager
with any questions.

You should see the same results and listing as below.

Eclipse Programmers’ Manual Page 110

LIST.ITEM JTS _MAHUAL.TEST "11™ 04:05%:43pm 03 Oct 2001 Page 1

11
001 Jeep
002 WUrangler
on3 2
(L] E
ons 19927

Listing 6.5: INLDWRITE.TEST

SUBROUTINE (PASSER)
** Version# 1[1] - 10/03/2001 - 04:04pm - JASONS - develop

**% Subroutine : JTS.DWRITE.TEST

* *k

**% This subroutine will create record ID "11" in the JTS.MANUAL.TEST file
*#% which will contain the data for a 1997 Jeep Wrangler using a dynamic

*##% array named AUTO.REC

* *

*** PASSER is not used in this routine
*

O 001NN B W —

*** Common Variables:
*#** None are used in this routine.
ES ES

OPEN 'JTS.MANUAL.TEST' TO TEMPFILE ELSE RETURN

REC.ID =11

AUTO.REC ="

*#% Setup the data in our dynamic array to write it out to disk.
AUTO.REC<1> = "Jeep'
AUTO.REC<2> = "Wrangler'
AUTO.REC<3>=2

AUTO.REC<4>=4
AUTO.REC<5> = 1997

#%* Save this new record out to disk on the JTS.MANUAL.TEST file record
WRITE AUTO.REC ON TEMPFILE,REC.ID

RETURN
IJASONS~10/03/01~16:04

Page 111 Eclipse — Copyright — June, 2001

Notice in line numbers 24-26 in the code above that you did not need to surround
the numbers with quotes. PICK, like most other programming languages, does not
let a variable start with a number. PICK assumes that anything starting with a
number not surrounded by quotation marks is a numeric value.

There are still problems with this routine. If this routine updates a record in
Eclipse, it is writing or attempting to write the record to the file whether or not
someone else is using the record. To solve this problem, lock the record to the
process while you are updating it. When a record is locked, UniVerse does not
allow any other process to lock or any other update to occur until the lock is
removed.

To lock a record, use READU, READV4, or MATREADU commands. They all
work the same as the READ command, except they lock the record in the file
until you write it out or use the RELEASE command.

To make our routine smart enough to lock the record while we update it, replace
Line 19 with the following code:

READU AUTO.REC FROM TEMPFILE LOCKED
WINDOW
PRINT ‘Record is locked to a different user.’
SLEEP 7
WINDOW.CLOSE
RETURN

END ELSE
AUTO.REC = ¢

END

Notice the new clause on the READU statement: LOCKED. This clause is valid
only in the READU, READV4, or MATREADU commands. The system
executes the LOCKED clause if the record is locked to another process when you
try to lock it. If you omit the LOCKED clause on these statements, the READU
waits until the other process releases the lock. When the subroutine reaches the
WRITE statement to save this record off, it releases the lock and lets another
process have the record for updates.

You will not use the READU command to lock records in Eclipse on a regular
basis. If you need to use it, though, you now know how. Also, after a READU
command if no WRITE statement exists, use the RELEASE statement to unlock
the record. If you do not use the RELEASE statement, the lock stays on that ID
until the process is terminated (the user logs out of Eclipse).

Exercise 6.7: Updating INI. DWRITE.TEST to Lock the Record
Before Updating
1. In your routine, replace the AUTO.REC = ¢’ logic with the READU

logic.
2. Save and compile the routine.
3. Run the routine.

You should see the same listing as below.

Eclipse Programmers’ Manual Page 112

Listing 6.6: Revised INLDWRITE.TEST for locking the record

SUBROUTINE (PASSER)
** Version# 1[2] - 10/04/2001 - 02:37pm - JASONS - develop

**% Subroutine : JTS.DWRITE.TEST

*k *k

**% This subroutine will create record ID "11" in the JTS.MANUAL.TEST file
*#% which will contain the data for a 1997 Jeep Wrangler using a dynamic

*##% array named AUTO.REC

* *

*** PASSER is not used in this routine
*

O 001NN B W

*** Common Variables:
*#** None are used in this routine.
kS %k

OPEN 'JTS.MANUAL.TEST' TO TEMPFILE ELSE RETURN

REC.ID =11

*** Make sure that another process is not trying to update this record.
##* If it is already locked by another process let the user know and exit.
READU AUTO.REC FROM TEMPFILE,REC.ID LOCKED
WINDOW
PRINT 'Record is locked by another process.'
SLEEP 5
WINDOW.CLOSE
RETURN
END ELSE
AUTO.REC ="
END
30
*#% Setup the data in our dynamic array to write it out to disk.
32 AUTO.REC<1> = "Jeep'
33 AUTO.REC<2> = "Wrangler'
34 AUTO.REC<3>=2
35 AUTO.REC<4>=4
36 AUTO.REC<5> = 1997
37
38 *** Save this new record out to disk on the JTS.MANUAL.TEST file record 11
39 WRITE AUTO.REC ON TEMPFILE,REC.ID
40
41 RETURN
42 1JASONS~10/04/01~14:37

@

Note: In the above listing, you still need the END ELSE clause on the READ
command. Using the END ELSE clause ensures that you set the dynamic array to the
empty string if the record was not already in the INLMANUAL.TEST file. READ does
not set up the dynamic array without the record being there. You, as the programmer,
must handle this case. Outside of the routine, if the record does not exist within the
file, there may be times you need to generate an error message that indicate to stop

processing.
Page 113 Eclipse — Copyright — June, 2001

MATWRITE to Save Data from a Dimensioned Array

Use the MATWRITE function in place of the WRITE function when using a
dimensioned array instead of a dynamic array. MATWRITE has the same clauses and

structure as WRITE, except that in the array section, MATWRITE is a dimensioned
array, as shown below:

MATWRITE MY.AUTO.REC ON TEMPFILE,ID

The above line of code saves the information in the dimensioned array
MY.AUTO.REC to the TEMPFILE file in the record ID.

Exercise 6.8: Creating INLMWRITE.TEST

1.

Follow the same steps as in Exercises 6.6 and 6.7 to put a new auto record for a Dodge

Caravan with 4 doors, 7 passengers, and year 1999. Make sure to lock the record while
updating it.

Save this record under ID 12.
Use the dimensioned array MY.AUTO.REC of 10 elements.

You should see the same results and listing as below.

LIST.ITEM JTS .MAHUAL.TEST 12 04:05:43pm 03 Oct 2001 Page 1

12
001 Dodge
002 Carawvan
003 4
ons 7
ons 1999

Eclipse Programmers’ Manual Page 114

Listing 6.7: INLMWRITE.TEST

SUBROUTINE (PASSER)
** Version# 0.01[2] - 10/04/2001 - 02:46pm - JASONS - develop
** Copied from BP JTS.DWRITE.TEST Version# 1[2] - 10/04/2001 - 02:37pm - JASONS - develop

**% Subroutine : JTS.DWRITE.TEST

*k *k

*#% This subroutine will create record ID "12" in the JTS.MANUAL.TEST file
*##% which will contain the data for a 1999 Dodge Caravan using a

*##% dimensioned array named MY.AUTO.REC

* *

*** PASSER is not used in this routine
*

O 001NN B W

#% Common Variables:
*#** None are used in this routine.
kS %k

OPEN 'JTS.MANUAL.TEST' TO TEMPFILE ELSE RETURN

DIM MY.AUTO.REC(10)
REC.ID =12

*** Make sure that another process is not trying to update this record.
##* If it is already locked by another process let the user know and exit.
MATREADU MY.AUTO.REC FROM TEMPFILE,REC.ID LOCKED
WINDOW
PRINT 'Record is locked by another process.'
SLEEP 5
WINDOW.CLOSE
RETURN
END ELSE
MAT MY.AUTO.REC ="
END

*#% Setup the data in our dynamic array to write it out to disk.
MY.AUTO.REC(1) = Dodge’'
MY.AUTO.REC(2) = 'Caravan'
MY.AUTO.REC(3) =4
MY.AUTO.REC4) =7
MY.AUTO.REC(5) = 1999

#% Save this new record out to disk on the JTS. MANUAL.TEST file record 12
MATWRITE MY.AUTO.REC ON TEMPFILE,REC.ID

RETURN
IJASONS~10/04/01~14:46

Page 115 Eclipse — Copyright — June, 2001

Using WRITEY to Update a Single Attribute of a Record

UniVerse also has a WRITEV function. With WRITEV, the program can update a
single attribute of a file’s record at a time. If you do not want to update any data
besides the single attribute, use this function.

WRITEYV is more efficient than the WRITE and MATWRITE statements. If you
begin to simultaneously run more than two WRITEV functions in a program on
the same record, stop and use the WRITE statement instead.

Exceptions to this rule exist: on large records, such as our LEDGER record, you
can use as many as three WRITEV statements, which would take the same
amount of time as one WRITE statement.

The WRITEV format is the same as the WRITE format, with the addition of the
attribute after the record ID. This attribute allows you to indicate the record’s
attribute in which you want to place the data. A sample WRITEV statement is
below:

WRITEV NEW.YEAR ON TEMPFILE,REC.ID,ATTB

Use the above statement to put information from the variable NEW.YEAR onto
the TEMPFILE file, REC.ID record, and ATTB attribute. The WRITEV
statement, as do the other two WRITE statements, supports THEN, ELSE, and
LOCKED clauses.

Exercise 6.9: Using WRITEYV to Update One Attribute of a
Record

In this exercise, use the WRITEV statement to update attribute 5 (year) to the year
2000 of record ID 12 in your INLMANUAL.TEST file.

1. Create a new routine named INL. WRITEV.TEST.

Update the comments at the top to standards.

Open the INLMANUAL.TEST file for use.

Lock record ID 12 for update.

Change the year from 1999 to 2000 using a WRITEV command.

A

You should see the same results as in Exercise 6.8, except the year should be
2000.

You should see the same listing as below.

Eclipse Programmers’ Manual Page 116

Listing 6.8: Listing of INL. WRITEV.TEST

SUBROUTINE (PASSER)
** Version# 0.01[1] - 10/04/2001 - 03:11pm - JASONS - develop

%% Subroutine: JTS.WRITEV.TEST

%k %

**% This routine will change attribute 5 (YEAR) of record 12 (Dodge

##% Caravan) in the JTS.MANUAL.TEST file to 2000 using the WRITEV
*%% statement.

% %k

**%* PASSER - Not used in this routine (IN)
k k
*#% COMMON USED:

*** None are used in this routine

* *

OPEN 'JTS.MANUAL.TEST' TO JTSFILE ELSE RETURN

O 001NN B W

REC.ID =12

*#** Lock the record for exclusive use to this process
20 READVU YEAR FROM JTSFILE,REC.ID,5 LOCKED
21 WINDOW
22 PRINT 'Record is locked by another process.'
23 SLEEP 5
24 WINDOW.CLOSE
25 RETURN
26 END ELSE
27 YEAR ="
28 END
29
30 *** Change the variable to 2000
31 YEAR = 2000
32
33 *** Save these changes to disk
34 WRITEV YEAR ON JTSFILE,REC.ID,5
35
36 RETURN
37 !JASONS~10/04/01~15:11

P

Bt

oA
¥

Note: The READVU command locks the entire record for exclusive use.

Page 117 Eclipse — Copyright — June, 2001

Summary

In this lesson, you have learned different ways to get data into a program from
disk. You have also learned how to save changed data back out to a disk. For
almost everything you do at Eclipse, you will need to know how to read and write
data to the database.

We also introduced the multi-dimensional aspect of the UniVerse database. For
this topic, we discussed how easy it is to add and remove data elements within our
tables.

Frequently Asked Questions
Question:

Why do I have to OPEN the file before I can use the READ or WRITE
statements? What does the OPEN statement actually do?

Answer:

The OPEN statement goes out to the physical file that you indicated at the OS
level to retrieve the header information for the following aspects:

e Type of file.
o Where the file lives.
e Permissions on the file.

It retrieves other information, as well. The READ and WRITE statements must
have this information to be able to correctly hash groups for each record and to
access this data on the disk.

Question:

What are the advantages to using a dimensioned array when the READ and
WRITE statements are slower? When should I use a dimensioned array instead of
a dynamic array?

Answer:

When you work with large records, the access time to pull out elements in the
dynamic array becomes inefficient. The dimensional array allocates each element
its own space in memory. Accessing attribute 300 is as fast as accessing attribute
1.

In Eclipse you should only use dimensioned arrays on the files that have pre-
determined array names and sizes and that live in COMMON memory. If the file
you are working on does not have a pre-determined dimensioned array, use a
dynamic array.

Eclipse Programmers’ Manual Page 118

Assignments — Lesson 6

1. In your INLMANUAL.TEST file of each record, create a subroutine that changes the
YEAR attribute to be both a start and end year.

e Place the starting year in value position 1 and the end year in value
position 2.

e Name this routine INLMANUAL.YEARS.

e (reate three internal subroutines using a dynamic array, one using a
dimensioned array, and one using WRITEV. The years you will use
should follow the below table:

Record Model Start Year End Year
1 Diablo 1990 1999
2 F40 1991 2001
3 Countach 1975 1990
4 Testarosa 1976 1991
5 911 1978 2001
6 Esprit 1975 1991
7 Boxster 1995 2001
8 Viper 1993 2001
10 Mustang 1965 2001
11 Wrangler 1996 2001
12 Caravan 1985 2001

2. Using Eclipse dictionary maintenance, create two new dictionaries on your file:
e (reate one for START.YEAR.
e (reate one for END.YEAR.
e Make both D types, and point them to Attribute 5 and the corresponding
value position.

Page 119 Eclipse — Copyright — June, 2001

Lesson 7

Standard Eclipse Operating
Environment

(eclipse

Objectives

In this lesson, you will learn about:

Common memory

Eclipse’s use for Common

Calling external functions or subroutines in Eclipse
Opening files with UT.OPEN.FILE

Eclipse Programmers’ Manual Page 120

Overview

In this lesson, instead of focusing on Eclipse BASIC or Eclipse functions, you
will be taking an in-depth look at Eclipse’s standard operating environment. This
includes discussions on Common memory (Common), including:

¢ Using Common

¢ The two types of Common

® Variables set in Common.
This lesson also discusses:

e Standard files

¢ The correct way to open files in Eclipse rather than using OPEN,
And reviews:

¢ Dynamic and dimensioned arrays

e READ and WRITE statements.

These discussions provide you with pertinent information for performing your job
at Eclipse. We recommend that, regardless of your previous programming
experience, you give this lesson your full attention.

Page 121 Eclipse — Copyright — June, 2001

What is Common?

Common memory is a space in memory where developers can store variables of
any kind. All programs running in the process can then access and change these
variables. Despite this definition, though, Common is almost a philosophical
concept to anyone who has worked with PICK BASIC for very long.

Common is much like the global variable concept in other programming
languages. Professors and professional consultants may preach “global variables
are bad,” but such statements oversimplify the facts. Common and global
variables can be misused like anything else in software development (think of the
GOTO statement). As a programmer, it is your job to determine what the true
scope of a variable should be. When used correctly, Common and global variables
can benefit any application.

For example, for variable that all programs need to access, such as the user ID
that the system logs to the application, you have three options:

1. Read the user ID from a file record in every subroutine.
2. Pass the user ID through the argument list of every subroutine.

3. Use Common so routines needing to access this variable can do so straight
from memory without reading it from disk.

Common is the best option to use in this scenario. Passing every possible global
variable through every subroutine is cumbersome, and using OPEN and READ
statements are the two most expensive functions a program can perform.

@

Note: In Eclipse, the Common variable name USER.ID identifies the user logged
into the Eclipse session. User.ID’s common variable, SECURITY, contains all
settings for this user from the INITIAL file.

At Eclipse, Common is used for storing:

e Data that many routines need to access quickly, including routines that are
often called in high profile places (such as Order Entry). For example:
USER.ID.

¢ File handles for files that are repeatedly used. By using Common, routines do
not have to open and re-open files. For example, in Eclipse, routines do not
have to open the LEDGER file. Instead this file is opened at login and stored
in the Common variable named LEDFILE.

¢ Dimensioned arrays of data that read from the standard files. For example,
LED would be used for LEDFILE and PRD would be used for PRODUCT
file. For a full listing of these arrays and the corresponding files, please see the
Appendix.

@

Note: The dimensioned arrays above are the ones referred to in the previous
lesson. They are the only dimensioned arrays used at Eclipse, unless your
supervisor instructs you otherwise.

Eclipse Programmers’ Manual Page 122

To see a listing of everything defined in Eclipse’s Common memory, pull up the
file CC and the record COMMON in view-only mode in the program editor. You
should see something similar to the listing below.

Listing 7.1: CC COMMON

1 COMMON /STDCOM/ COMDATA(150), SECURITY , MAIN.MEN, FILES(50),
AOFILES(150), GLDATA(35)
2 *#* Version# 6[1] - 10/02/2001 - 04:55am - CHRISM - develop

COMMON FLAGS(100)
COMMON TCL.LEVEL., RECALL.FLAG, E.MESS.

COMMON LED(200),0LED(200),LD(100),0LD.LD(100)

COMMON PRD(200),PRDP(30),PRD.BR(70),PRDC.BR(30),PRDD.BR(30)
COMMON PGRP(10),PLNE(30),PLNE.BR(10),PLNB(5),BL.BR(50)
COMMON CUS(200),CUSS(200),MA(25)

COMMON TAX(15),AR(50)

COMMON SCROLL.VAR, SVIEW.DEF., SVIEW.DATA.(10)

$INCLUDE CC EQU.ESC.OBJECT
$INCLUDE CC EQUATES

PROMPT CHAR(0)

This listing details how to use the COMMON function in order to tell UniVerse
when to place a variable in Common. Much like the DIM statement, you need to
indicate how large the array of Common information should be. Looking at lines
1 and 5, you can also see that Common accepts a name parameter. This parameter
defines either named or unnamed Common. You will learn about these types of
Common in the next section.

Technically, each subroutine that will access common variables must declare this
at the top of the routine. However, our pre-compiler forces all subroutines to use
the same Common in Eclipse. So the subroutine does not need to make this
declaration. Pull up the OC version of our last subroutine, IN. WRITEV.TEST, to
see results similar to the listing below.

Page 123 Eclipse — Copyright — June, 2001

Listing 7.2: OC Version of INLWRITEV.TEST

SUBROUTINE (PASSER)
$INCLUDE CC COMMON

O 001N N W=

% % % % % FoF K K X X ¥

OPEN 'JTS.MANUAL.TEST' TO JTSFILE ELSE RETURN

REC.ID =12

READVU YEAR FROM JTSFILE,REC.ID,5 LOCKED
CALL WINDOW(",",",",",",)",")
PRINT 'Record is locked by another process.'
SLEEP 5
CALL WINDOW.CLOSE(")
RETURN
END ELSE
YEAR ="
END

YEAR = 2000

CALL EWRITEV(YEAR,JTSFILE,REC.ID,5,"UBP~JTS.WRITEV.TEST~34")

RETURN
* Compiled by JASONS on 10/04/01 15:11 from UBP:JTS.WRITEV.TEST
*#% Version# 0.01[1] - 10/04/2001 - 03:11pm - JASONS - develop

Notice that the pre-compiler added the code SINCLUDE CC COMMUON at line
2 of this subroutine. When compiled at the Universe level (using the BASIC
command you learned in Lesson 4), this code places data from the CC COMMON
record at the top of this routine. Remember, you do not have to manually type in
the BASIC command. The pre-compiler performs the BASIC on this subroutine
once it generates the OC code.

®

Caution: Pay attention to this last piece of information. If you ever change what
is in CC COMMON, you must re-compile everything in the OC using the BASIC
command. If you do not re-compile, the system displays Common size mismatch
errors between the subroutines. Your supervisor must approve any changes to
Common.

Eclipse Programmers’ Manual Page 124

Defining Named Common, Unnamed Common, and
Understanding Eclipse Menus as Subroutines

On-line UniVerse Help explains the difference between named and unnamed
Common as follows:

A common area can be either named or unnamed. An unnamed common area is
lost when the program completes its execution and control returns to the
UniVerse command level. A named common area remains available for as long
as the user remains in the UniVerse environment.

While this is a good definition of named and unnamed Common for most
UniVerse developers, it does not define how unnamed Common works within
Eclipse.

In Eclipse, the system never drops the user down to a UniVerse prompt. Instead it
keeps users within Eclipse menus, and as discussed, everything that runs from an
Eclipse menu is a subroutine. Unlike the traditional STOP function that ends the
process and clears or protects the unnamed Common, when Eclipse uses an
unnamed Common, it returns control to the subroutine before the end of the
program.

@

Note: The Common area name can be of any length, but only the first 31
characters are significant.

When Eclipse users log on to the company’s main server, the first process they
see is the LOGON.ECLIPSE program. In UniVerse, VOC entries with the same
name as the UniVerse account name that the session is initiated in will be
automatically run. This is a unique feature of UniVerse.

In the next exercise, you will look in develop to determine why
LOGON.ECLIPSE is the first process UniVerse runs at login.

Page 125 Eclipse — Copyright — June, 2001

Exercise 7.1: Exploring Why LOGON.ECLIPSE is the First
Program All Develop Users Run

1. Press F2-T to access TCL.
2. Enter CT VOC DEVELOP.

You should see the same results as shown below.

KEscy=Exit,<Alt>-P=Prev Cmds,<Alt>-L=Lists,<Alt>-C=Clear List,<{Alt>-E=Phan Exec
CT VOG Develop

DEVELOP
ooo1 PQ
0002 HCLEARCOMMOM
0003 HLOGOM.ECLIPSE
ooos P

Attribute 1 of this record tells UniVerse that this VOC entry is a proc or process.
Line 2 tells UniVerse to execute the CLEARCOMMON command. This
command is used to avoid the Common size mismatch error when you switch
between accounts (such as develop and support). The most important line in this
VOC entry is Line 4. This line tells UniVerse to execute the program called
LOGON.ECLIPSE. When a user starts a new UniVerse session in the account
named Develop, UniVerse executes all of the commands set forth in the above
VOC entry.

LOGON.ECLIPSE is not a complex routine. It checks a few environment
variables and then calls the subroutine MENU.STARTER.

MENU.STARTER initializes our standard files and most of the common
variables. It validates users’ IDs and passwords when they log into Eclipse. Once
Eclipse has validated the user ID, the remaining user specific common variables
are initialized and then execute the MENU.DRIVER program using the CHAIN
command. The CHAIN command terminates the MENU.STARTER process and
continues it as the MENU.DRIVER.

Eclipse Programmers’ Manual Page 126

The CHAIN command is the key to the differences between the named and
unnamed Common at Eclipse. Every time a user pushes a menu at the root level,
MENU.DRIVER runs another CHAIN command to terminate the old process and
begin a new one. At this point, all unnamed Common is cleared and only named
Common continues to the next process. If you use the CHAIN command, you
cannot return to the current process, which is one drawback to using the
command.

The EXECUTE command performs a UniVerse process in its own processing
space and waits for that process to complete. Once the process completes (or
dies), the current process picks up where it left off. Because the EXECUTE
statement has its own process space, the process occurring under this statement is
passed and the named Common variables (they are unprotected) and unnamed
Commons are cleared (protected). The unnamed Common is cleared for the new
process (inside the EXECUTE) but is still available to your original process. Your
lower process sees only its own unnamed Common area.

The diagram below demonstrates how named and unnamed Common work
together:

Application Process

Named Common

Process 1 - Unnamed Common

exacute

Subroutine 1 »Process 2 - Unnamed Common

Return contral to F1 on
complete

- Subroutine 2

Straight call t

Subroutine 2

Process 3 - Unnamed Common

CHAIN {no return

to Process 1)

By using EXECUTE and CHAIN on the push levels, Eclipse protects the
common variables in unnamed Common from being changed in the lower
routines.

Page 127 Eclipse — Copyright — June, 2001

T

j

g

Note: As a programmer, you are responsible for understanding the statement
above. Rather than saving common variables before calling another routine that
may overwrite the variables, use the EXECUTE logic to protect the unnamed
Common variables. If your called subroutine only takes one argument through the
EXECUTE, use the internal Eclipse subroutine EXEC.PGM to run this lower
routine. If the subroutine you need to call takes more than one argument, write a
driver routine that can be called through the EXEC.PGM interface. These driver
programs will be discussed in detail in later lessons.

When you add a variable to named or unnamed Common, you are defining the
scope of that variable. All processes in Eclipse that are started from the menus of
this user session can access and change data in named Common, while only the
current level of processes can access and change the unnamed Common variables.
This availability of named and unnamed Common variables determines the
placing of variables like USER.ID into named Common and LED and PRD into
unnamed Common.

Consider the following scenario:

If a user is in product file maintenance and pushes to a second screen with a
different product, you do not want to overwrite the current product’s information
with the new product. You want them both to stay intact. By using EXECUTE
and unnamed Common, you can accomplish this with no extra code.

@

Note: You must get your supervisor’s permission before adding or deleting any
common variables.

Eclipse Programmers’ Manual Page 128

Introduction to CC EQUATES and More Common Within
Eclipse

At this point, you have learned about CC COMMON and should know the
following:

e All Eclipse subroutines include the same Common variables.
¢ Use named Common variables when all processes need to access and change the data.

e Use unnamed Common variables when only the current process needs to access and
change the data.

e CHAIN and EXECUTE protect the unnamed Common area from level to level.

You are probably still looking at CC COMMON and trying to find the USER.ID
variable we keep referring to and do not see it defined. We will discuss why that
is so in the next section.

How Eclipse Defined Common

The architects of Eclipse defined Common using only arrays, rather than defining
each variable in either unnamed or named Common. They then placed the arrays
into named and unnamed Common variables. This may sound like a strange
concept at first, but let’s explore what makes this a good decision.

In the Program Editor, pull up CC EQUATES in view-only mode to understand
how this definition worked. You should see a listing like the one below.

Page 129 Eclipse — Copyright — June, 2001

Listing 7.3: First 50 Lines of CC EQUATES

** Version# 112[2] - 09/20/2001 - 09:29am - DONS - develop
* G/L Auto Posting account number Equates

EQU GL.AUTO.INVTY TO GLDATA(4)

EQU GL.AUTO.FGHT TO GLDATAC(S)

EQU GL.AUTO.HNDL TO GLDATAC(6)

EQU GL.AUTO.PURCH TO GLDATA(7)

EQU GL.AUTO.CPTI = TO GLDATA(8)

EQU GL.AUTO.XFER.AR TO GLDATA(9)

EQU GL.AUTO.XFER.AP TO GLDATAC(10)

EQU GL.AUTO.XCH TO GLDATA(11)

EQU GL.AUTO.INVADJ TO GLDATA(12)

EQU GL.AUTO.DISCG TO GLDATA(13)<1,1>
EQU GL.AUTO.WOEDISCG$ TO GLDATA(13)<1,2>
EQU GL.AUTO.OSAP TO GLDATA(14)

EQU GL.AUTO.GAS TO GLDATA(15)

EQU GL.AUTO.AR TO GLDATA(15)<1>

EQU GL.AUTO.AP TO GLDATA(15)<2>

EQU GL.AUTO.UBAP TO GLDATA(15)<3>

EQU GL.AUTO.CASH TO GLDATA(16)

O 0NN B W~

EQU AR.AGING.TYPE$ TO GLDATA(19)

EQU GL.POSTABLE.AR$ TO GLDATA(20)<1>
EQU GL.POSTABLE.AP$ TO GLDATA(20)<2>
EQU GL.POSTABLE.UBAP$ TO GLDATA(20)<3>
EQU GL.CONVERSION.DT$ TO GLDATA(20)<4>

* Equates preserved when levels are pushed

EQU USER.ID TO COMDATA(1)

EQU PORT TO COMDATA(2)<1>

EQU TERM.VERSION$ TO COMDATA(2)<2>
EQU DOWNLOAD.GDL$ TO COMDATA(2)<3>
EQU PASSER.COM TO COMDATA(3)

EQU SCR.WIDTH TO COMDATA(4)

EQU SCR.LENGTH TO COMDATAC(S)

EQU MENU.STACK TO COMDATAC(6)
EQU WINDOW.LEVEL TO COMDATA(7)
EQU TTY.DATA TO COMDATA(S8)

EQU RELOG.NOW TO COMDATA(9)

EQU TCL.LEVEL TO COMDATA(10)

EQU PUSHMENU TO COMDATA(11)
EQU LOCATION TO COMDATAC(12)

EQU GL.AUTO TO COMDATAC(13)

EQU EOMDSS$ TO COMDATA(14)

EQU PRC.PRECI$ TO COMDATA(15)<1>
EQU PRC.ROUNDS$ TO COMDATA(15)<2>
EQU PRC.PRECLSLS$ TO COMDATA(15)<3>
EQU LOG.OVRDS TO COMDATAC(16)
EQU TAG.COST.UPD$ TO COMDATA(17)

Caution: While many of the above variables do not end with a $ symbol, Eclipse’s
standard is now to include the $symbol at the end of all new common variables.

Eclipse Programmers’ Manual Page 130

In CC COMMON, you should notice that there was actually an INCLUDE
statement on this file (CC EQUATES), which places these lines of code into the
subroutines at the time of compilation. Look at line 30: it has the variable
USER.ID equated (or made to be a pointer) to the Common variable
COMDATAC(1). The USER.ID variable is only one part (element) of the
COMDATA array. Yet when you write or read any code that needs to obtain a
user ID, you see USER.ID referenced rather than the unreadable COMDATA(1).
In Listing 7.1, line 1, COMDATA is placed in the named Common section.
Because the array that we equated USER.ID to lives in names Common,
USER.ID will also reside in named Common. You should also notice as you read
further in the CC EQUATES that, had we put every variable in COMMON, the
routine would become unbearable to read or maintain.

The most important feature of common data inside arrays is that the size of
Common does not need to be increased when new Common variables are added.
The new variable is equated to the next element in the current common array.
This means you do not need to recompile every routine for the addition of one
Common variable (as long as you used CC EQUATES and not CC COMMON).
Instead you only have to compile the routine that references the new variable for
everything to work.

®

Caution: You must compile any routines that reference this new Common
variable (from CC EQUATES) before they can be used. If you do not, the correct
pointers will not be established within them to access this equated Common
variable.

T

{7
A

!
Note: When defining a new Common variable, you must pick the correct array to
put it in. Some arrays live in named and others live in unnamed Common. You
must decide what the scope of this new variable is before putting it into the CC

EQUATES record.

=

o
Tip: One major drawback exists in putting Common variables as equates to large

arrays. When using the RAID (UniVerse) debugging tool, you cannot find the
value of an equated variable. Instead you must know the array and element within
the array to find it. However, if you use the Eclipse SHOW function, this
drawback can be minimized.

Page 131 Eclipse — Copyright — June, 2001

Standard Files, OPEN.STANDARD.FILED, and
UT.OPEN.FILE

In this section, you will learn another way that Eclipse uses Common: the
standard file handle. The architects created an array called FILES, which resides
in the named Common area. This array contains the most commonly used files
within Eclipse. These files are open at login time and remain open so the
programs do not have to keep reopening them.

The most expensive thing a program can do is OPEN a file. If a file is not a
Common file, it gets closed at the end of every routine. Common files remain
accessible throughout routines. For files without Common, each subroutine would
need to either open a lot of files at the top or pass file handles as parameters.

So, by picking the top 50 files and making them standard files, all programs can
read or write to these files without the overhead of opening them. There is a
hidden benefit in this approach: any program accessing any of these files always
uses the same file handle. The PRODUCT file is always PRDFILE, the ENTITY
file is always CUSFILE, and so on.

As a programmer, you can tell what a file is by the file handle. To find a list of all
standard files, look in OPEN.STANDARD.FILES. The system displays a list of
the files that are opened at login time.

If you ever need to access a file that is not in the standard file liest, you should not
use a direct OPEN statement to access it. Instead, use Eclipse’s function
UT.OPEN.FILE to open the file. UT.OPEN.FILE keeps the last 50 files open to
this process in named Common. Therefore, if a user commonly hits a non-
standard file, the file does not have to be reopened each time.

@

Note: UT.OPEN.FILE replaces the older subroutine UT.OPEN.COMMON.FILE
because it is an easier format to understand and use.

=

o
Tip: If you have developed in PICK BASIC, you should notice a difference in the

way you call subroutines in ECLIPSE BASIC. You do not have to use the CALL
statement in front of the routine, nor do you need to supply the arguments on the
end of the subroutine if you are not going to use them. The pre-compiler
populates these with the ‘” string. Be aware that when you change the number of
arguments in a subroutine, you must recompile all routines that call this
subroutine. If you do not, you will get an Argument mismatch error at run-time.

Below is a table defining the parts of the following syntax that you want to use to
open your INLMANUAL.TEST file to TEMPFLE:

UT.OPEN.FILE ‘INLMANUAL.TEST’,TEMPFILE,ERR.MSG
IF ERR.MSG THEN RETURN

Eclipse Programmers’ Manual Page 132

Parts Description

Routine name UT.OPEN.FILE

Argument list: e FILENAME: The actual file you want to open in this routine.

e FILE.HNDL: Returned back to the calling routine as the handle to access
above file.

e ERR.MSG: Set to the error string if the file could not be opened.

e NO.ERR.DISP: Tells UT.OPEN.FILE not to open a window in case it is
being called from a phantom, web, or Java process that cannot close this
window.

e HNDL.NUMBER: Actual element within the FILES array where this file
handle is living.

Notice that you did not suppress the error message display. This process is live
and you want the user to be notified if the file cannot be opened.

®

Caution: UT.OPEN.FILE does not display the error message when the file cannot
be opened. If the file is a phantom, web, or Java process (or any other process
for which you do not want a window opened or a message displayed), you must
set the flag NO.ERR.DISP to YES (1) so the window does not display. You must
also handle the ERR.MSG coming back into the program. If you do not, any
access to this displays error messages: with improper data type error messages.

Page 133 Eclipse — Copyright — June, 2001

Exercise 7.2: Using UT.OPEN.FILE
1. Pull up INLWRITEV.TEST in edit mode.
2. Change the native OPEN statement to UT.OPEN.FILE.
3. Make sure to check ERR.MSG in case the file cannot be opened.
4. Save the routine and compile it.
5. Run the routine.

You should see the same results as in the previous lesson. The listing should
be similar to the listing below.

Listing 7.4: Updated INL. WRITEV.TEST to use UT.OPEN.FILE

SUBROUTINE (PASSER)
** Version# 0.01[2] - 10/05/2001 - 07:33pm - JASONS - develop

#% Subroutine: JTS.WRITEV.TEST

k k

**% This routine will change attribute 5 (YEAR) of record 12 (Dodge

*##% Caravan) in the JTS.MANUAL.TEST file to 2000 using the WRITEV
%% statement.

k k

*** PASSER - Not used in this routine (IN)

k *k

##* COMMON USED:

None are used in this routine

& k
UT.OPEN.FILE 'JTS. MANUAL.TEST"JTSFILE,ERR.MSG
IF ERR.MSG THEN RETURN

O 01NNk W

REC.ID =12

*** Lock the record for exclusive use to this process
21 READVU YEAR FROM JTSFILE,REC.ID,5 LOCKED
22 WINDOW
23 PRINT 'Record is locked by another process.'
24 SLEEP 5
25 WINDOW.CLOSE
26 RETURN
27 END ELSE
28 YEAR ="
29 END
30
31 *** Change the variable to 2000
32 YEAR = 2000
33
34 *** Save these changes to disk
35 WRITEV YEAR ON JTSFILE,REC.ID,5
36
37 RETURN
38 !JASONS~10/05/01~19:33

Notice that you did not need to supply the arguments at the end of the
UT.OPEN.FILE. The pre-compiler fills these arguments with the “” string and
passes it on.

Eclipse Programmers’ Manual Page 134

Note: Because UT.OPEN.FILE assigns this file handle to a Common file handle
in the FILES-() array, you do not need to use UT.OPEN.FILE in a stand-alone

phantom routine created for one time use. However, we still recommend you use
UT.OPEN.FILE for consistency.

Page 135 Eclipse — Copyright — June, 2001

Summary
In this lesson, you have gone over the following:
e Common memory space
e Named versus unnamed Common
e How Eclipse uses Common
e How to call external functions or subroutines in Eclipse

* How to correctly open files in Eclipse using the UT.OPEN.FILE subroutine.

Frequently Asked Questions
Question:

How do I call an external subroutine, such as UT.OPEN.FILE, in the native
UniVerse BASIC?

Answer:

Use the CALL statement. If you look at the Listing 7.4, line 15 would become the
following:

CALL UT.OPEN.FILE('JTS.MANUAL.TEST' ,JTSFILE,ERR.MSG,","

You need to supply the final two arguments to UniVerse or you would receive the
argument size mismatch run-time error message. Never call a subroutine in this
manner.

In Eclipse, you can sometimes use the CALL @ function, which you will learn
about in a later lesson.

Assignments — Lesson 7

1. Outline the steps to create a new common variable within Eclipse. Assume there is
room in the current Common arrays. This Common variable will store the users’
default-shipping branch for this session.

What would you name this variable? Should it live in named or unnamed
Common? Why?

Hand this outline and information into your training supervisor.

2. Create a subroutine named INL.LUT.OPEN.FILE. Use UT.OPEN.FILE to open your
INLMANUAL.TEST file and print out (in human-readable format) the information
for the automobile in record ID 4 of the INLMANUAL.TEST file. Make sure to give
labels to each piece of data you display.

Eclipse Programmers’ Manual Page 136

Lesson 8

Screen Functionality: Calling,
INP, F12, Esc, and Hotkeys

(eclipse

Objectives

In this lesson, you will learn about:

e Screen design and screen calling
e Basic usage of INP
¢ Handling F12, Esc, and Hotkeys

Chapter 8

Page 137 Eclipse — Copyright — June, 2001

A. Screen Designer

Screens:

Screens are tools we use to display information to the user. We also use screens as a way
to receive information from the user. Through the use of screens Eclipse creates a Ul
environment for the user to interact with. On these screens we can include mouse event
handling and program hotkeys to allow the user to easily navigate their way through the
Eclipse system.

Screen Designer:

To design a screen for a particular subroutine we need to enter the program editor. After
selecting the desired subroutine we then need to enter the key ‘S’ for “Screen”. We are
then taken to the Screen Designer. You will note that the first time entering the Screen
Designer we are prompted with a blank screen. It is now our job as programmers to build
a screen that follows Eclipse design protocol so that we maintain a uniform appearance.

Mouse Utilization:

The Screen Designer strongly utilizes both right and left buttons on the mouse. Double
clicking on the right mouse button will change the cursor to one of the six listed drawing
tools: Standard (none), Single Vertical/Single Horizontal, Double Vertical/Single
Horizontal, Single Vertical/Double Horizontal, Double Vertical/Double Horizontal, and
Erase.

Keyboard Controls

¢ Standard (none) — When in standard mode no drawing will be done.
This is the mode that we should be in if we are wanting to type text.

¢ Single Vertical/Single Horizontal — This drawing mode will draw a
single line wherever the cursor is moved to.

¢ Double Vertical/Single Horizontal — When in this mode moving up
and down will draw a double line, while moving left and right will
draw a single line.

¢ Single Vertical/Double Horizontal — When in this mode moving up
and down will draw a single line, while moving left and right will
draw a double line.

® Double Vertical/Double Horizontal — When in this mode moving up,
down, left, or right will draw a double line.

Mouse Controls:

® Note that when using any of the drawing modes a single left mouse
click will reposition the cursor to any desired location on the screen.

e Horizontal and Vertical lines can be drawn using a single click of
the right mouse button. Simply choose a location in which to start a
line, single click the right mouse button. Then position the cursor to
the ending position and perform another single right click. The
Designer automatically knows to draw the selected style of line

between the two chosen points.
Eclipse Programmers’ Manual Page 138

Saving:

When we are finished drawing and wish to return to the Editor press the Esc key. We are
then taken to our program change log where we will note the changes and assign a tracker
number.

*When the screen is compiled it is saved under the same name as our subroutine, this will
come into play when we want to call the screen.

Dump Screen:

The DS command inside the Program Editor is very useful when programming a screen.
When the DS command is executed the printer will print our screen with (X,y)
coordinates, making it easy to locate specific points on our screen. Keep in mind that the
printout begins at row and column 0, when assigning window sizes we must include these
0 positions.

B. SCREEN Command

History:

Up until now when we displayed a window by simply using the WINDOW command.
Now that we have a screen that we want to show we are going to want to get more
specific with our WINDOW statement.

*Note that if we type WINDOW followed by hitting
the F10 key the compiler will automatically tell us
the desired variables to include in the statement.
This works for all Eclipse subroutines.

WINDOW includes the following eight passable variables:
1. STCOLX - The starting column on the screen

STROWX — The staring row on the screen
WIDTH - How long the screen spans horizontally
LENGTH — How long the screen spans vertically
STYLE - Style of the window
0 —single line border
1 —single line vertical, double line horizontal
2 —double line vertical, single line horizontal
3 —double line vertical, double line horizontal

o 9 -no border
SCRN - Screen ID
TITLE - Title to display to the top of the screen
8. REL — 1=> coordinates relative to current window

Nk w

(@)
o
O
O

N e

Page 139 Eclipse — Copyright — June, 2001

If we do not enter anything for the first two values the compiler automatically centers the
window in the screen. In order for the screen to look professional we must be precise
with our WIDTH and LENGTH pass. This is one place where our DS printout will be
helpful.

SCREEN:

After we have properly displayed a window it is time to call our screen. We can do this
by using the SCREEN command. Early we learned that the screen is stored under the
same name as the subroutine it is designed for, for that reason we need only to type
SCREEN if we are in that screens subroutine. If for some reason we are not in the
screen’s subroutine we will need to reference the screen name like this 2 (SCREEN
‘INLMANUAL.TEST’).

Exercise 8.1
Let’s build a screen that will have the capability to show all information in our

INLMANUAL.TEST file. The top line should be the automobile ID line. This ID line
should be separated from the rest of the areas with a single horizontal line. (look below)

Automobile ID: [1

[

| I Make
| I Model

*Note, we should always design our screens to match those already built by Eclipse. If

you have any questions about format simply browse through the Eclipse system and
mentally note the standards for each page. **Or view our standards guide.

C. PRINT @ Command

As we learned in previous chapters the PRINT @ command is useful when we want to
print information to a desired position on a screen. Now that we have a background
screen to print to and a DS printout, the PRINT @ command becomes that much more
useful. If we created a screen for our INLMANUAL.TEST information we would want
to display the MAKE, MODEL, SEATS, DOORS, YEAR.START, and YEAR.END
headings in our screen. With the PRINT @ command we can print information to the
proper place on a screen. PRINT @(COLUMN, ROW) **relative to the screen displayed

D. CLEAR.SCREEN

If we ever want to clear the information on a screen without clearing what was written by
our screen compiler we would use the CLEAR.SCREEN command. The
CLEAR.SCREEN command basically prints the most recently called screen, in that
window level, on top of the screen that is currently being displayed.

Eclipse Programmers’ Manual Page 140

E. Introduction to INP

All we have learned so far is how to design a screen, display, and print out information
that we already have in memory. Next we are going to learn how to take in information
from the user. There are many ways of doing this but for now we will work with the INP
command. All inputs should be written as internal subroutines. The subroutines should
always begin with the letters INP, for example: “INP.AUTOMAKE:” This way everyone
who looks at your code realizes that this subroutine is inputting data from the user.

A typical INP subroutine is made up of three pieces: The INP line, the QUIT line, and the
ON MOVE line.
IN.AUTOMAKE: INP AUTOMAKE, 12,15,18

IF QUIT THEN GOTO FINISH

ON MOVE+1 GOTO INP.AUTOMAKE, INP.AUTOMAKE,
INP.AUTOMAKE, INP.AUTOMAKE, INP.MODEL, INP.MODEL, INP.MODEL

The INP line

The INP command has 12 passers listed below:
1. Variable — The name of the variable that the input should be stored in
Hor — The horizontal position that the input should be started at
Ver — The vertical position that the input should start at
Length — The maximum length that the user will be allowed to enter
CNVR - Conversion
STPOS - Starting position
AUTORETURN - Auto return from INP @ end of length
DFLT — Default value for this INP field
VERIFY - Criteria that the input must meet. This can be done using a
D:, S:, F:, of C:
10. TERMCHARS -
11. HELPSCR -
12. OUTSTRING -

A S A b

The QUIT line

The variable QUIT is a common binary variable that is turned on if the user strikes the
ESC or F12 key.

Example: IF QUIT THEN GOTO FINISH
This line checks to see if the user has struck the ESC or the F12 key, if so then take us
directly to the FINISH internal subroutine. In the FINISH internal subroutine we will

further check to see which key the user struck so that we can either exit with a save or
exit without a save.

Page 141 Eclipse — Copyright — June, 2001

The ON MOVE line

The ON MOVE+1 GOTO line has seven options. The order of these seven options is as
follows: ONERROR, Left, Up, Right, Down, Tab, Enter. This means that if the user
moves using any of these keys they will be directed to the subroutine that we have
specified. Commit the movement order (Left, Up, Right, Down) to memory, this is not
the only place this will be used.

*FALLING OFF THE SIDEWALK

Falling off the sidewalk is logic that we will be using when dealing with Input
subroutines. The metaphor “falling off the sidewalk™ is describing to us what happens
when we complete all tasks in an internal subroutine and there is no MOVE or GOTO
statement to guide us. Our program simply falls to the next executable line in our code.
For example what will happen in the following subroutine if the user enters information
in the IN.AUTOMAKE input zone and hits the enter key?

IF QUIT THEN GOTO FINISH
ON MOVE+1 GOTO IN.AUTOMAKE, IN.AUTOMAKE,
IN.AUTOMAKE, IN.AUTOMAKE, IN.MODEL

* %

IF QUIT THEN GOTO FINISH
ON MOVE+1 GOTO INP.MODEL, INP.MODEL,
INP.AUTOMAKE, INP.MODEL, INP.DOORS

That’s right they are going to be taken to the INP.MODEL internal subroutine because
there is nothing written in the ON MOVE statement dealing with the Enter key. Falling
off the sidewalk is logic all programmers should get comfortable with.

Exercise 8.

In this exercise we should create inputs for every data point on the INLMANUAL.TEST
screen.

Handling ESC and F12

The difference between hitting the ESC key and hitting the F12 key is that the ESC sets
only the QUIT variable to true, whereas the F12 key sets the QUIT variable and the F12
(common Boolean variable) to true as well. In our FINISH subroutine that we will write
we need to take care in which test we run first, the QUIT test or the F12 test.

*If the user hits the F12 key we want the user to exit from the current task without
saving any changes (this will make more sense when we get into the UPDATE
subroutine). When they hit ESC we want to make changes and return to the previous
screen.

Eclipse Programmers’ Manual Page 142

In Eclipse we have a subroutine called CONFIRM.ABORT that will return a 1 if the user
confirms, or a 0 if the user does not confirm. We use this whenever handling the F12
key. For example we would use it like this:
IF F12 THEN
CONFIRM.ABORT ANS
IF ANS =0 THEN GOTO IN.AUTOMAKE
IF ANS =1 THEN GOTO FINISH
END

Since a F12 key strike sets both QUIT and F12 to true we need to check the F12 value
first or we will never be able to differentiate which key strike the user made.

UPDATE

For the next exercise we are going to write our own UPDATE subroutine.

Background: At Eclipse we are dealing with many users accessing the same records on a
frequent basis. They both might want to change values in the same field at the same
time. For this reason we need to write our UPDATE subroutine so that if we have user
collisions we inform the user that an error has occurred and their record changes were not
made.

*For example if we have two people, person A and person B. Person A comes
along and reads record number 44 at exactly 10:00 AM. At 10:01 AM person B looks at
the same number 44 record. Person A decides to change the MAKE and START.YEAR
fields and UPDATES the record at 10:05 AM. Person B decides to make changes to the
START.YEAR and END.YEAR at 10:06. We can see that if we are not careful the
changes that person A made may be wiped out.

The five key ingredients that you will need to successfully complete this exercise are
listed below:
Old Record - a copy of the record when we made the read
New Record — a record that has the changes we made
Current record — a current locked copy of the record in question
A file handle

Q A record ID
To make this easier break it down into steps. The first step is to read and lock a current
copy of the record. The next step is to compare the current record to the old record. Is it
the same? The next step would be to compare the current record to the new record. Is it
different? The final step is to either write the new record on the current record or tell the
user that there was an error and their changes were not made.

a
a
a
a

- Write an Update subroutine for the INLMANUAL.TEST file.

Page 143 Eclipse — Copyright — June, 2001

While holding doven the cirl key

7] g 7 8 a
5]
4 6 4 &
1
1 2 3 2]
n e O
= i
vwhile holding down the aft key wyhile holding down both the ctrl and alt keys
7 g a ? g g
5 B
4 B 4 g
1
1 3
2 3 2

Keyboard commands in the Screen Design

F. Hotkeys!!!

We have noticed that on every screen in the Eclipse system we see hotkeys. Hotkeys are
executed by holding down the ALT key and then hitting the highlighted character. What
goes on behind the scenes? Well you are about to learn. Building hotkeys starts in the
Screen Designer. It is uniform that all hotkeys are located at the bottom of the screen
separated by a single horizontal. It is also uniform to have a space at both the front and
back of the hotkey word. For example:

Exercise 8.

Include this at the bottom of your INLMANUAL.TEST screen. Program them to load to
proper places inside the subroutine. For example we do not want to allow the user to
DELETE when they have not yet selected a record.

| NEW | COPY | DELETE | ADDL |

Eclipse Programmers’ Manual Page 144

The next part of programming a hotkey resides inside of our subroutine. We must find
the proper location to initiate the MENU.LOAD command. We will need to perform a
MENU.LOAD for each of the hotkeys that we have designed. The MENU.LOAD has
five possible passes listed below:

1) HOR - This is the starting horizontal position of the hotkey
word

2) VER - This is the starting vertical position of the hotkey
word

3) ILEN - This is the length of the hotkey word

4) HPOS - This is the location of the character in the word that
we wish to highlight.

5) HKEY- This is the actual character that is going to be
highlighted

Here is an example of what the command would look like for the NEW hotkey listed
above. MENU.LOAD 3,15,3,1,’N’

The next thing that we need to do is program the code for what happens when the hotkey
is executed. We are going to call these hotkeys just like we would call any other internal
subroutine, with a slight twist.

*It is very important to know the order in which these hotkeys were loaded. That order
must be used in the SUBS: line described below.

A SUBS: subroutine (line) must be created to act a distribution agent when a hotkey is
used. When the user holds the ALT key and character the computer records this entry
into a common variable named OPTION. Depending on the order in which the hotkeys
were loaded determines the number that is passed into the OPTION variable. OPTION
will then be used to direct us to the proper subroutine listed in our SUBS: line. Example
below:

e e e e e *
SUBS: ON OPTION GOTO NEW.REC,COPY.REC,DEL.REC,ADDL
K e e e e k

GOTO vs. GOSUB

An important concept that programmers at Eclipse need to understand is the difference
between the GOTO statement and the GOSUB statement. The GOTO statement does not
require a RETURN statement whereas the GOSUB statement does require a RETURN
statement. A good rule of thumb is “for every GOSUB there must be a return. When we
use the GOSUB we are creating a stack. When we perform stacks it is important to un-
stack in the same order. If we fail to use these stacks correctly some interesting/bad
things are going to happen to our subroutines. GOTO statements do not require a
RETURN. A GOTO statement does not create a stack.

The RETURN statement by itself will send us back to the location that the GOSUB was
called from. If we use the RETURN TO statement then we will be returned
to the specified location. Most importantly, with either of these RETURN’s we have
correctly returned to the previous stack.

Page 145 Eclipse — Copyright — June, 2001

Lesson 9

More Eclipse Programming:
VSCROLLS, INP’s, and Mouse
Event Handling

(eclipse

Objectives

In this lesson, you will learn about:

e VSCROLLS
e INPWP, INP.WINDOW, INPWP.WINDOW, INP.MULTI
e Mouse event handling

Chapter 9

Eclipse Programmers’ Manual Page 146

A. VSCROLLS

Overview:
In Eclipse we will use a VSCROLL whenever we want to display a list of records that we
want the user to be able to select from. Like any other screen in the Eclipse system the
VSCROLL building must begin in the Screen Designer. Build a screen that matches
Eclipse uniform screen design. In this screen we will need a blank space in the center
that is roughly 50 characters wide, and 12 lines long. We will call this screen
(subroutine) ini.auto.vscroll.

VSCROLL.DEFINE

This is the second step in our VSCROLL design. The VSCROLL.DEFINE has six
possible passers listed below:

1. VIEW - A unique identifier by which this VSCROLL can be called

2. COL - The upper left column that the desired VSCROLL starts at

3. ROW - The upper left row that the desired VSCROLL starts at

4. WIDTH - The number of characters wide the VSCROLL region will
be
ROWS — The maximum rows visible to the screen at one time
Screen.ID — The name of the current screen

SN

VSCROLL.SET
Once we have defined the region with the VSCROLL.DEFINE we can then load it using
the SCROLL.SET. The VSCROLL.SET command has only one passer, it is the VIEW
identifier that we set in the VSCROLL.DEFINE.

VCLR
The VCLR is a clear vscroll command. The VCLR will wipe out anything that is written
in the specified vscroll region by placing a blank copy over the top of the current copy.
The VCLR has only one passer, it is the VIEW identifier that we set in the
VSCROLL.DEFINE.

VPRINT
The VPRINT command works similarly to the PRINT @ statement. It requires a desired
location and a string to print. When we want to print information to a VSCROLL we will
be using a VPRINT statement to do so. The VPRINT statement requires three passers
listed below:
1. COL - This is the starting column position
2. ROW - This is the starting row position
3. STRING - This is the string that is to be printed to the specified area
INPV
The INPV is the method we use to get an input from the user inside of a VSCROLL. The
INPV is very similar to the INP method of retrieving information. Keep in mind we keep
track of where we are inside of a VSCROLL by noting which LINE we are in. Itis a
good idea to set up a variable at the beginning of you code. Many things we do inside of
the VSCROLL will need to change the value of LINE. We will later discuss how to
move from one line to another, tracking our movements so that we can change the value
of LINE.

Page 147 Eclipse — Copyright — June, 2001

*Helpful Hint

Note that when we are printing information to the screen or to the VSCROLL we
often want to print out an exact amount of spaces. We can do this by using the “(L or R
depending on justification)#Desired number of spaces”. For example if we wanted to
print out a string named STRING, and we wanted it to fill up exactly 25 spaces on the
screen we would write the line:
VPRINT 3,1,STRING “L#25”
This will print out the value stored in STRING and fill in the remaining area with spaces.
The L or the R indicate whether we want to left or right justify.

PARSEMOVE

The PARSEMOVE is how we are going to handle movement within the VSCROLL. The
PARSEMOVE is very similar to the MOVE+1 that we worked with for INP statements.
The PARSEMOVE is different than the MOVE statement because the PARSEMOVE
actually returns values to let the program know where the user moved. For this reason
we need to set up a few variables when we load our subroutine. The first needed variable
will be named LINE. The LINE variable will hold which line the user is on. The other
variable needed is the COL variable. This variable will hold the column that the user is
in. If we do proper coding we can always determine where the user has the cursor within
the VSCROLL. The PARSEMOVE has eight passers (five of which are required) that
are listed below:

1. COL - This IN/OUT variable takes in where the user was and puts out

where the user has gone.

2. L —This IN/OUT variable takes in the line the user was in and passes
the line they have moved to.
COLS - This is the number of columns in the VSCROLL
LS — This is the number of lines in the VSCROLL
The size of a scroll page if the user does a page-up page-down
DNOK - Set to yes if the user can move up or down from the line they
are on
NEWOK - Set to yes is the user can move to a blank line
8. BORDERMOVE - Records the direction that the user tried to exit

from.

SNk Ww

=

We should create a subroutine names MOVEMENT that we will contain a F12 and QUIT
check, a PARSEMOVE, and an ON COL. The ON COL will tell us to move to a certain
INPV statement if the user moves in that direction. The ON COL statement should look
something like this: ON COL GOTO MAKE, MODEL, DOORS, PASSENGERS,
START.YEAR, END.YEAR.

B. INPWP, INP.WINDOW, INPWP.WINDOW, INPMULTI

INPWP INPUT WORD PROCESSOR
The INPWP acts as an input field that allows multilane entries. For example if we have a
record that has an address attribute we might want to enter more than one line. The
INPWP allows us to do just that. Not only will it allow us to enter multiple lines but it
also puts a VM (Value Mark) at every CRLF (Carriage Return Line Feed). For example
if we were to type the following text into a INPWP

Eclipse Programmers’ Manual Page 148

Address: Eclipse, Inc.
1909 26" St.
we would be storing an attribute that looked like this
Eclipse, Inc.?1909 26" st.

*Note that the value mark was already inserted for us.

The INPWP has eight possible passers listed below:

ITEM — The variable to assign the input to

HOR - This is the horizontal starting position of the input

VER - This is the vertical starting position of the input

WIDTH - The number of characters wide the input field will be
LENGTH - The number of lines visible to the user at one time
LINES — The maximum allowable lines that the user can type to
MOVES - The moves that the user can make inside of the INPWP
zone

8. HELPSCR - The help screen that should display for this input field

NNk W=

The MOVES variable should be a length of four 0’s or 1’s. Remember the move path of
(left,up,right,down), that is the path we are going to set. The first value is left, the second
up and so on. The value in the positions is either going to be 0 to not allow, or a 1 to
allow. For example the following MOVES pass will not allow up down moves, but will
allow left right moves. StrMoves = “1010”

Note that we put this value into a string, then when we call the INPWP we will call the
string. An example of code might be this:

StrMoves = “1010”
ADDRESS: INPWP ADDRS,10,8,35,2,50,StrMoves

INP.WINDOW

The INP.WINDOW is another way in which we can bring in information from the user.

It works just like the standard INP command except it calls its own window to display the
(information/input) field. With the INP.WINDOW we can bring in multiple values into a
single attribute, separated by value marks. Also with the INP.WINDOW we have the
ability to set the read-only flag to true, if we only want to display information, not receive
information from the user. A good place to use the INP.WINDOW command is when we
want to create a list of items from the user. The INP.WINDOW could be used to read a
list of product for an order. The attribute field would then be made of a set a value mark
delimited ID’s.

INPWP.WINDOW
The INPWP.WINDOW is just like the INP.WINDOW command except it allows for
multi-line entries in the new input window. This would then break down the storage to

the next level and put Value Marks in the place of the CRLF within a single entry.
We might use this if we wanted to gain a list of addresses from the user.

Page 149 Eclipse — Copyright — June, 2001

INP.MULTI

The INP.MULTTI is a call that will allow the programmer to bring up a new window that
has already been designed with three hotkeys listed next: CLEAR LIST, SAVE, and
RECALL. This window is designed to bring in a list items from the user. INP.MULTI
has seven passers listed below:

= DS — The variable that the input will be stored in.

= Max.len — The maximum length of the input

= Justify — Where the cursor will justified on the pop up screen

= Verify — Input verification

= CNV - Conversion format subroutine

= Title — The title of the popup window

= FLCode — The name of the file that you wish to store the data in

= READONLY -is set to yes if it only a read only
Remember that the variable that is used for the IDS must be defined before it is called
because Eclipse treats this as a dynamic array. For example:

CARTEST =~

INP.MULTI CARTEST, 7
This subroutine has the ability to write the list off to a file, to do this the programmer
must assign a value to the FLCode.

B. Mouse Event Handling

Mouse event handling is designed to create a pseudo GUI that will allow the user to click
on portions of the screen to initiate designated events(subroutines). This internal
subroutine basically records the X and Y positions when the user makes a click with the
mouse. We can then evaluate the X and Y values and launch subroutines on that basis.
To get a quick copy of a generic mouse event handling, hold down the alt key and hit 1.
You can then copy this code and paste this code at the bottom of your subroutine.

MOUSES: GET.MOUSE.POSITION X,Y
Y-=1
BEGIN CASE
END CASE
RETURN

Eclipse Programmers’ Manual Page 150

In order to handle the mouse click we at Eclipse use CASE statements, as seen on the
copy you made from the alt-1 command. The two things that need to be checked in the
case statement are the x and y positions, for example if we are programming for the user
to click on the hotkeys on the screen shown below:

Mouse Testing

= Eagle = Albatross = Birdie = Par = Bogie = =

If the word Eagle begins on line 18 and column 3 we would handle the case statement
like this:

CASEY=17AND X<7AND X>1

GOTO EAGLE
EAGLE is a subroutine that prints the message ‘One under Par’ to the screen.

Page 151 Eclipse — Copyright — June, 2001

