&

ACTIVANT

UniVerse Data Structures
with Report Writer and Mass Load

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 1

&

ACTIVANT

© 2007 Activant Solutions, Inc. All rights reserved. Unauthorized reproduction is a violation of
applicable law. Activant and the Activant logo, among others, are registered trademarks and/or
registered service marks of Activant Solutions, Inc. in the United States and other countries.
Eclipse is a trademark and/or a service mark of Activant Solutions, Inc. in the United States and
other countries. Other parties' trademarks or service marks are the property of their respective
owners and should be treated as such.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 2

&

ACTIVANT
Table of Contents

UniVerse Data Structures with Report Writer and Mass Loadcccueeeue. 1
The UniVerse Databasecoc.eoiiiiiiiiiiiieieeee ettt e 7
What 1S @ Database?cc.eevuiiiiiiiiiiiieeee ettt 7
Frequently Asked QUESTIONScccuiiiiiieiiiieeiee ettt e et eeste e et e e e e e e s taeessaeeesssaeenseees 8

| DT 1) 1 9
Accounts in ECHPSEccouiiiiiiiiiniiiiininniinnintinnsnninssnsiesssnsnesssssiessssessssssssssssessssssssns 9
Eclipse Database ACCOUNEScccuieiuieiiieiieeieeteeeteeieesteeeteeseaeebeesteessseesseessseesseessseenseessseens 10

| DT 1) 1 0/ 11
ECHPSE FIIES acueriiiiinneriiiiiinnriccssssnnniccssssnnnecssssssssecsss 11
Valid Files 1N ECIIPSE....eieiiiiiiiiieiie ettt ettt sttt eteesaaeenbeenseas 12
File Definition Mainte@nancecooueeiiieiieiieeiieiie ettt et st e e ens 18
Maintenance LOZEINGc.eeviiiiiiiiiiiieiie ettt et saee st et e et eesbeesibeeteeeabeenseesnseenseesnseens 19
File Definition Parameterscooiiiiiiiiiiiieie ettt 20
File Definition Maintenance for a Branch Specific File.........cccocoovviiniiiiiniiiiiiieeeen 22
LLESSOM 3 ...couerrreiicnnisnniicssssnnnecsssssnssessssssnssessssssnssessssssnsssssssssasssssssssasssssssssassssssssnassass 24
Eclipse File StrUCLUIeuuciiiiiivveiiiciicsnriccsscsnnrecssssnsnecsssssssnecsssssssesssssssssssssssssssses 24
EClIPSE FIl& SIUCTUIEeeiiiiieiiieeee ettt et e et e e e e e tae e e taeeesneeesnneeenenes 25
Attributes, Values, and SUD-ValUeSuviviiiiiiiiiiiiiiieeeeeeeeeeeee ettt 26
Viewing Raw Data in a File using TCL........cccoiiiiiiiiiiieie e 28
LISTITEM .ottt ettt et sttt et b et e e sb ettt sbe e b e e naeenee 28
3 USRS SR 28
DIISP et bttt h bbbt et h ettt eh e b et enaeenee 28
SORT.ITEM....eiiiiiieiee ettt ettt ettt et e s et e te et esate bt enbeeseenseenseeneenseeneas 28
LS T ettt h et h et et h et a e bt bt e a e bt et e a e bt e bt et e nae e 28
Dictionary Maintenance SUMmMmATry SCTEEMcccuveereuieeriiieeriieeniieerieeesaeeensseesssreesssreesseeessnes 31
Field DESCIIPIONSeeuiieiiiieiieeiiteiie ettt ettt e ettt e et e et eseaeeteesabeesseessseenseesaseenseesssesnseennseans 33
HOE KYS ettt e e ettt e e ettt e e e et e e e e e e abaeeeeansbeeeeennsaaeeeentaeeeannns 34
Example of Multi-Values in Dictionary Maintenance SUmmarycocceecveveevieneeneeneennenn 35
Example of Sub-Values in Dictionary Maintenance SUmmarycccccceeeeeueeenieeenveesenveennne 37
Branch Specific Data File StrucCtureccceeiieiiieiiieiieie et 40
PROD.BR FIL@ ...ttt ettt ettt ettt e esaeeseeneesneenes 40
PROD.CALC.BR FIl@....ccutiitiiiiiiieitieieeesee ettt st st s 43
LLESSOM G ...ouuueneiriiiinnnriinnsnnennccsssnnsnecssssnssnecsssssssnecssess 45
Selecting and Listing Data in TCL......iiiiiininniininnicnssnicsssnnicssssessssssesssssses 45
Using the Select REtrieVe VEIDScccuiiiiiiiiiiieecie ettt e 46
Retrieve SentenCe OPEIatOrS.cccuieiiieriieiieeieeiteeteettestteeteeseteesteessaeeseeseseeseessseesseesssesnseens 47

25 21 401 0] (<SPS 47
IMUIEIPLE SELECLS ...eevvieiieeiiteiie ettt ettt et ettt e st e e beesaeeesbeesaaeenseesseaenseesseennseans 48
WILA CATAS ettt sttt ettt et e s b e et e e s ateeabe e beesbeesateans 49
SAVEA LLISES ..ttt ettt et b et st a et b e bt ettt e b enees 51
LiSting SaVEd Data......c..eeeeiiiiiiiieiiee ettt et e et e e st e e e e e e e e aaeeeareeennaeennnes 52
SOTEINE ..ottt ettt ettt ettt ettt e et e st e et e e bee et e e steeabe e aeeesbeeseeeabeebeeenbeenneeensaeenbeenseennne 55

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 3

&

ACTIVANT

Setting CommON Data..........oouiiiiiiiiriiierteeeee ettt 56
SET.COMMON ...ttt ettt ettt ettt ettt sttt et e s st e bt e atesae e beeneeebeeteentesneenseennes 56
Activating Upper/Lower Case SENSItIVILYcoeerueriirieiiriinieieneesieeieeeesieeie e 58
UL COMMANG. ...ttt sttt e be et esae et e eaeesae e beentesaeenteennesneens 58
LESSOMN Snneriiiiiiiiiniininnneenintiessnnicssnnecsssseecssssessssssnesssssessssssessssssssssssssssssssssssssans 60
Creating a Basic Report in Report WIiteriiciiccveneiccsicnnnnccssssnnnnecsssnnsnees 60
REPOTT WITEET ...ttt ettt bt et st b et st be e e 61
Desi@ning YOour REPOTt.......oeiiiiiiiiiieiie ettt et e e e e e stae e s e e enbeeeens 61
Painting Your COIUMNS.cc.eoiiriiiiiiiinieieetente ettt sttt ettt 63
Using the Files Option on Report WIIteTcccuiivuieriieriieeiieieeeie et 66
Advanced Search for Dictionaries in Other Filesccocoeiiiiiiiiiiiiieeeeee 70
How does the System Know what Files you have Access t07......ccceevvieriieriienieeniienieeieeeeens 72
Path Option 0n RePOTt WITETcouiiiiiiiiiiiiieiieerteeee et 73
COlUMN DALA ...ttt ettt et et e bt st e e e nareenn 77
Ignore Branch HIerarChy...........cooiiiiiiiiiiiieie et e 78
Break and Total.......oc.oiiiiieeeee et sttt 80
FOrmatting Dataoc.oiiiiiiiiii ettt ettt st ettt e et saeeen 82

| DY 1) I TR 85
Selecting and Sorting Your RepOrt.......eiiiniviiinisnicsssnnicsinnicssneccssssncssnseenes 85
Report Writer/Mass Load Selection SCTeen.........c.eevciieeiiiiieiiieeiiecie et 86
Compare To Column on the Select SCreeNceeviiiiiiiiiiiiieeie et 88
Comparing to a DIictionary Itemcoociiiiiiiiiiiiicciie et e 88
Comparing t0 @ TEeXt StING.....ccuveriiieiieiii ettt ettt e sre bt e seteebeesabeenseesnsaens 89
Comparing to @ NUIL VaIUCcooiiiiiiiicieeeeeeeeee e e e 89
Comparing to a User-Defined Promptccceoiiiiiiiiiiiiiiiiieiee et 90
SOTtING the REPOTt..cceiiiiiiiieiie ettt e et e e taeeetaeesaeeessaaeeenseeenaseeas 94
Report Writer Advanced Selection SCIEENc.eevuiieiieriiiiieieeieee et 95
Report Driver: Running the RePOrt........ccccuiiviiiiiiiiiiiieceeee et 96
LESSOM 7 aeenneriiiinniiiinniiisinneicsntncssssnecssssessssseesssssssssssssessssasssssssssssssssssssssssssssssssssane 99
RepOrt Writer OPLionscccocvvericciscssnniccssssnnsessssssnsss 99
Report Writer OPtiONS SCIEEM......ccuuiiiiiiiieiieeiieeiee et eite ettt et sieeebeesibeesbeesnbeeseaesnseensneenne 100
Creating Mailing Labelscc.ooiiuiiiiiiieciieee ettt e e e e e e e eaaeeenaeeens 102
LESSOM 8...nnnriiiiiiiiiiiiinitiinntiinsnticsinticsssntisssnstesssssnesssssssssssssssssstsssssssssssssssssnns 107
Creating a Mass Load.......iiinveiiininniiinssnnicnnniicsssnicssssnccssssnessssssesssssscsssssssssnns 107
IMASS LLOAA ...ttt ettt b ettt e aeenees 108
Designing the Mass Load.........cccooiiiiiiiiiieee e 110
Identifying the Data TYPEcceeeiieiiieiieeiieeie ettt ettt ettt et sbe et e esbeeseesnbaessaessseennes 112
Setting a Replacement ValUecoc.coiiiiiiiiiiniiiiiiiececeeeee et 113
Leaving the Default/Set Value Field Blank............ccccoooiiiiiiiiiiiiiiiiiciccieeeece e 114
Replacing a Value with @ TeXt Stringcociriiriiiiniinieeeeeee e 115
Setting @ Value t0 NULL.....ccoieiiiiiiiiiicieeeee ettt e e eteesaeeebeessaeenseens 118
Replacing a Value with another Dictionary ID Value..........ccccoooiiriiiniiniinininicciceeee, 119
Replacing a Value with @ TeXt StriNgcc.ceeriiieeiiiieiiieeieeeeeeee e 120
Replacing a Value with a Concatenated Value..........coccoeeviiriiniiiiniiniiieicececceceeen 121
Replacing a Value with a Numerical EXPreSsionc.cocveecieerieiiiienieeniienieeiee e evee e 122
WOTA WIAPPING ..ttt ettt ettt st ettt ettt e e sbeesbe et e eanenees 123

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 4

&

ACTIVANT

LESSOM 9cnneriiiiiiitteinntininnneccsntecsineessssntecssssnesssssesssssesssssassssssassssssssssssssssssns 124
Dictionary Maintenance and I-DeSCripPtorsS......cccueereccsccsnrrccssssnsreccssssnsssecsses 124
Dictionary MaNtENANCEcc.uiertieiiieiieeieesite et etee et eette et e sate et e estteebeessbeenbeesneeenseesaeeenseenees 125
Dictionary Field Definitionsccveiiieiiierieiiiiesieeiteeie ettt eie et esbeeseaeesaesaaeesnee e 126
Hotkeys in Dictionary Maintenance SCIEEMcccueriereriirienieerienienieeieetesie et 129
Creating an [-DESCIIPLOTcovuiiiiiieiiie ettt ettt e e ee et e e s beeesbeeessaeeensseeenseeenneeenns 131
Elements in an [-Descriptor Formula............ccccoooiiiiiiiiiiie e 132
FICLA INAINES ...ttt ettt ettt b et et e bt e bt et e s beenbeeneesaeeaeennes 133
OPETALOTS ...ttt ettt ettt ettt e s et et e st e e bt e san e e be e sate et e e eaneenbeesaneennnensneeanees 134
TeStING [-DESCIIPLOTS ...veeiuiiieiiiieiiieeeiee ettt etee et e et eeesbee e st eeesaaeeestbeeessseesnsseesnsneesnneenns 135
LeSSON 10 ..uuuuuiiiiiiiiiiiiiiniiniinneciineecssnnencssnnnesssssnesssssecsssssssssssasssssassssssnsssssasssnns 136
Creating Mathematical I-DeSCriptors ...c..eeiccrrvsreeiecsssssnnescssssnssecssssssssssssssnnns 136
I-Descriptors that use a Mathematical Formula..............cccccooiiiiiiiniiiiiiiiee e 137
LeSSON 11 .uuuuiiiiiiiiiiecnnnininneeessnnecssnencsssnnecsssneesssssessssssesssssassssssessssssssssssasssssns 141
Creating Internal Variable I[-DeSCriptors.......iiececvccnericcsscsnnenccssccnnenecsssnnes 141
INternal Variables........c.ooiuiiiiiiiieeieee et ettt et et e 142
Using the @RECORD Variablecccoiiiiiiiiiiiiieeceeeee et 143
Using the @VM Variablecooiiiiiiiiieee et 148
LeSSOM 12 ...uuuiiiiiiiiiiiinniicinticsinneicssnntissssnnesssssnesssssnssssssesssssassssssasssssssssssassssnss 150
Creating Field Command [-DeSCriptorscccoceeeecscnrcsssnnncsssnsncsssnsecssssecsanns 150
FIELD FUNCHION ...ttt ettt sttt e e e e 151
USING the PSUB FIle......oiiiiiiiiiiii ettt 153
LeSSOM 13 ..uuuueiiiiiiiiinniiiinniinsnnicnsnsicssssessssssesssssnesssssssssssessssssssssnsasssssssssssssssssnss 156
Creating TRANS Command I-DeSCriptorsccccceeevverccscnercsssnseccssnsecssnsecsnns 156
TRANS FUNCHON ...ttt et ettt b e st e bt e e abeebeeeaeeas 157
Using the ORDER.QUEUE Fil@........ccooiiiiiiiiiiiiiiieie ettt 163
USING the PSUB FIl@......oiiiiiiiiiieceeee ettt e eeenaeeenae s 164
Using a Double TRANS Command............ccceeeuieiiieniieniienie ettt seae e 165
USING NOES FIIESuiiiiiiieciiiecie ettt e e e et esaae e e aee e s baeesnseeeenneeas 166
LeSSON 14 ...uuuuiiiiiiiiiiniiinnnticsinticsineicssnstessssnesssssnssssssesssssassssssassssssssssssasssnss 168
Basic FUNCHIONS.....cuuiiiniiiinniiiittiicsnniissnnicsineicssstncsssnesssssnssssssesssssssessssssssanss 168
Basic FUNCHIONS ...c...oiuiiiiiiiiieecee ettt sttt 169
LEN FUNCHION. ...ttt ettt ettt et e bbbt e et e eabeesateenbeeneee 169
IF THEN ELSE OPETatOrsScccuviiiiiiieiiiieeitee ettt et et sit et esiteesiveeeseseeesabeeesaneeenanees 170
Using IF THEN ELSE to Fix a Problemccccoooviiiiiiieiieeeeeeeeeeeeee e 172
Examples of other [F THEN ELSE DiCtiONari€scccevueeierienieeiienienieeieeiesieesie e sieenieennes 173
(O] 11 2 ot 1< SN 1 01 PSSR 174
STR FUNCHION ...ttt sttt et st b et sttt sae et et esbe e 177
TRIM FUNCHION ...ttt ettt ettt e bt e et sbe e sabe e bt e s b e e seeenaeas 178
CONCALENIALION ..ottt ettt ettt et e st e bt et e eatesbe e bt eatesbeenbeeatesbeeaesneens 179
OCONYV FUNCHOMN ..ttt et ettt be e bt e bt e et e e sbeesabeesbeesnbeenbeesaneas 181
DCOUNT FUNCHOMN. ...c.utiiiiieeiieeiteieetesitet ettt sttt sttt ettt sbe et s sae e b eanes 182
LeSSON 1S iiiiiiiiiieirntincnneeenineecssnencsssneecsssaesssssssssssssesssssassssssessssssssssssasssssns 183
USING SUDTOULINES «.cceiieiniiirisnricsisnnicsssnnissssnnecsssnessssssessssssesssssssssssssssssssssssssssssnns 183
SUDTOULINES ...ttt ettt et et e et e bt e et e esseeeabeessteenbeesateenbeesseesnseans 184

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 5

&

ACTIVANT

Subroutine Dictionary EXamplesc..cooeviiiiiiiiiiniiiiieciececeeee e 194
APPEINAIX A cooonneiiiiiniinninnicnssiisssnsiesssssissssssessssssessssssesssssssssssssssssssssssssssssssssssssss 200
Answers to I-DeScCriptor EXEICISESciceiiencniisssnncsssnnicsssnecssssessssssesssssesnns 200
LLESSOM 12 .ttt ettt st ettt et 201
LLESSOM 13 ..ttt ettt e ettt e ettt et et e et e et e e aaee s 201
LESSON 14 ..ottt ettt st e b e ettt et eaee 202
APPENAIX B couuueeiiiiiiinniiiiiniinnnriiisissssnnccssssssicsssssssssssssssssssesssssssssssssssssssssssssssssssssss 204
File Layouts for Release 7cceiiiceicrsnniecsssssnnnecssssansissssssssssssssssssssssssssssssses 204
ENtity FIle LAYOULveiiiiiiiieeie ettt ettt ettt et e e e nsaeenseesnaeenseeenne 205
Product Dynam File Layout.........cccouiiiiiiiiiie ettt s 208
Product File LayOuL........ccccuieiiiiiiieiieie ettt ettt et ettt e et esaae e e 209
Product Price File LayOutcoooeiiiiiiiiecie ettt et e evae e s 211
Searching for a Dictionary Item using TCLccciiiiiiiiiiiiieeiee e 211
APPECNAIX € aouuenrrriiininnnrnicsicsnnnnccssssssnnecsssssssnessssssssnssssssssssesssssssssssssssssssssssssssssssses 212
File Layouts for Release 8iiiiiivvniiiiiiivnniiccsscsnnneccssssnnerccsscsnssnecssssssssessnes 212
Entity File Layout Release §.........cc.ooiiiiiiiiiiiiiee ettt 213
Product File Layout Release 8cccuieciiiiiiiiiiiiieciiecie ettt 220
AR File Layout REICASE 8cccviiiiiiieiiie ettt vee e e e enaee s 224
PSUB File Layout REIase 8.........cceeriieiiiiiiiiieieeieeee ettt 227
APPENAIX D couueerrriiiiinnniiiinicsnnnnccsssssnnecsssssssnessssssssncsssssssssessssssssssssssssssssssssssssssssses 228
SUDFOULINES ceocueeiiiiinniiiisnncsisneecsssnnecssneesssneesssssecssssnssssseesssssssssssessssssssssssassssssens 228
Dictionary SUDIrOULINES......cccceivevnriicsscsnriicssssnnnecssssssssncssssssssssssssnsssssssssssssssssses 229

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 6

&

ACTIVANT

Overview

The UniVerse Database

What is a Database?

A database is a collection of related files. A file is a collection of related records. A
record is a collection of fields (attributes). A unique identifier (ID) or Key identifies each
record within the file. In multi-dimensional databases such as Universe, attributes can
also consist of multi-values and values can consist of sub-values.

Files

Files are collections of logically related items or records. For example, a file cabinet
contains folders, which in turn contain similar types of information. We all remember in
grade school that everything we did (good and bad) was recorded in our record. Well,
I’'m sure they had a big filing cabinet filled with all of our records. At Eclipse, we have
files about our customers, the products our customer sell, and our vendors just to name a
few. Each of these files contains records made up of similar types of information. For
example, at Eclipse we have about 400 customers so as you might guess there are about
400 records in our customer file, each containing similar types of information. Examples
of that information would be the customer name, address, and phone number.

Records

A record is a collection of logically related attributes or fields. Therefore all of these 400
records in our customer file will contain a name of the customer, address, contacts,
billing information, and other information for that ONE customer. Each record in the
customer file is formatted in the exact same way. A record would be like a file within a
section of the file cabinet. Going back to the grade school example, each “file” (one per
student) would contain our grades, names, mom’s name, and so on.

Attributes

An attribute is simply a dividing mark between each data element. When you access the
data, you can quickly get to the field of data (attribute) you need. So the first attribute or
field in the customer file might be name, the second; address, the third; contacts, etc.

Record ID / Key

Each record in a file must have its own unique identifier. This is called the key to the
record. This key may be any combination of alphabetic, numeric, and most punctuation
characters. At Eclipse we mainly use ’.” and ’~’ as punctuation characters. No spaces are
allowed in the key. Because of the uniqueness of the key, a programmer can pull data
very easily from a database to be used in any program they write. The ID for our grade
school records may have been our name or our social security number.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 7

&

ACTIVANT
Frequently Asked Questions

Question:

Why doesn’t Eclipse just use the old PICK systems approach and use one operating
system and database combined?

Answer:

There are many drawbacks to this old model. The main one being that very few hardware
platforms support the PICK operating system. The nice part about having a database like
UniVerse is that most of the customization you would do to port onto different platform
models is done by them. All databases and products that run on an OS (or hardware
platform) must get “certified” by that manufacturer, which can take a lot of time and
money. For Eclipse we just install the correct version of UniVerse on that OS and we’re
ready to go.

Question:

With all of the more popular databases (like Oracle) in the software industry, why did
Eclipse choose a seemingly smaller and unknown database like UniVerse as its database
provider?

Answer:

Oracle is a very high-end database platform with a very high price point. Oracle (and
almost every other relational database including Access) is also limited to the 2-
dimensional approach within a file and its record. The file contains records and the
records contain data across the columns.

The UniVerse database is very powerful and can easily handle up to 5 and 6 dimensions
within each record. Finally, the PICK database (and UniVerse in particular) is very easy
to maintain and optimize. We can easily add fields to files (tables) without changing the
whole file structure and our clients do not need a full-time Data Base Administrator to
make sure the database is “tuned” and running properly.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 8

&

ACTIVANT

Lesson 1
Accounts in Eclipse

Objectives

After you complete this lesson, you will understand:

e The Eclipse database accounts
e The Eclipse test/training account
e How to use the Eclipse University TrainS and TrainM accounts

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 9

&

ACTIVANT

Eclipse Database Accounts

The Eclipse database is called an account when it is installed on your system. In Eclipse
you can set up multiple accounts. These are datasets used for different purposes.

Y our main account is the “live” account. You may also have a play account set up for
training purposes. Accounts are separate database occurrences with their own datasets.
Transactions you enter in one account have no effect on any other Eclipse account.

At Eclipse University, we have set up two Eclipse accounts. As you log in to the
“enterprise box” or “host,” you are prompted to pick one of the following accounts:

Account is set up for a...
TrainS single-branch company.
TrainM multi-branch company.

When selecting an account, remember:
e The sales sources and terminal are unique for that account.

e Transactions, such as a sales order, will appear only in the account you are
working in.

e A customer set up on one account, will not be added to any other account.

Exercise 1.1

1. Log into Eterm using the user ID assigned to you.
Your password at the Eclipse banner is the same as your Unix login ID.
How many account options are there when you log in?

2. Log into the TrainS account and access a customer record.

3. Log into the TrainM account and try accessing the same customer.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 10

&

ACTIVANT

Lesson 2
Eclipse Files

Objectives

After you complete this lesson, you will understand:

e Eclipse static, dynamic and branch specific files
e The Eclipse files most commonly used for running reports

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 11

&

ACTIVANT

Valid Files in Eclipse

The files listed in the Valid Files Control Maintenance record are Eclipse files that can
be used with the Report Writer and Mass Load programs. This list of files is maintained
by Eclipse and should not be modified.

Static files contain data that does not frequently change. The static data files most
commonly used in Report Writer and Mass Load include:

ENTITY (contains Customer, Vendor, Branch, and Jobs/Ship-To information)
PRODUCT (contains Stock, Non-stock, Special, and Catalog items)
TAX.CODES

BUY.LINE

PRICE.LINE

TERMS

Branch specific Files contain data that is branch and/or territory related and are linked to
a static file. Report writer reports and Mass Loads are not created directly using these
files. The parent file is used which will display dictionary items from these files.

BUY.LINE.BR - Parent File is BUY.LINE

ENTITY.BR — Parent File is ENTITY

PRICE.LINE.BR — Parent File is PRICE.LINE
PROCURE.GROUP.BR - Parent File is PROCURE.GROUP
PROD.CALC.BR — Parent File is PRODUCT

PROD.BR — Parent File is PRODUCT

Dynamic files contain transactional data and are continually changing. The dynamic data
files most commonly used in Report Writer and Mass Load include:

Release 8

ORDER.QUEUE (contains open Ledger transactions)

PRINT.QUEUE (contains Ledger transactions that are queued to print or need to
be confirmed)

AR

PSUB

CHECK.XREF

UniVerse Data Structures with Report Writer and Mass Load Page 12

&

ACTIVANT
The PHYS File is dynamic and each time a Physical Control file is generated, a valid file

is created in UniVerse. These files should be purged periodically to conserve disk space.
The purge routine for this file is found on the Files Menu in the Merge/Purge option.

The four most utilized files for reporting purposes are:

PRODUCT
ENTITY

e AR

PSUB

If you understand the file structure of these four files, you can utilize any other valid file
in Eclipse with ease.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 13

&

ACTIVANT

The following table lists many of the files used in the Eclipse system. We will discuss
these files and the type of information that is stored in the file. This table is a good way
to begin the process of getting to know your files.

File Name

Contains...

ENTITY

Name and address data for customer bill-tos, customer ship-tos, vendor pay-
tos, vendor ship-froms, and branches.

PRODUCT

Product descriptions, groupings for the products, and pricing information.
PROD.PRICE and PROD.DYNAM support this file.

AR

Summary information (header and totals, along with associated dates) for
closed ledger transactions, such as sales invoices, received purchase orders,
cash receipts postings, accounts payable invoices, and completed branch
transfers. The ID to the file is the Ledger#.Invoice#. Example: S1012302.002.
After transactions process, the summary information moves from the
ORDER.QUEUE file to the AR file. Transaction details move to the PSUB
file.

PSUB

Line item detail for closed ledger transactions, such as sales invoices, received
purchase orders, transfers, and inventory adjustments. Each product on a
transaction creates 1 record in this file. For example, a sales invoice with 5
products creates 5 PSUB records. When a transaction is processed, the
detailed product information pertaining to the sales order moves from the
ORDERS.QUEUE file to the PSUB file.

ENTITY.BR

This file contains branch specific data assigned to a customer/vendor. These
overrides take place in Customer /Vendor file maintenance under the
Additional Information, Branch Overrides option..

BUY.LINE

Purchasing-related information, such as Buyer, Target Factor, Target Value,
Order Cycle Days, etc. The ID to the file is the Buy Line ID. Information from
the Buy Line Maintenance Screen is stored in this file. Products are linked to
this file when a buy line is assigned.

BUY.LINE.BR

This file contains the branch specific / Territory specific data for the Buy line.

CONTACT

Information entered on the Contact Maintenance screen.

COUNT.QUEUE

List of products to be counted for each branch. Products that have a negative
on-hand, have been over-committed, or for which there was a manual
backorder on a shipped ticket go to this queue.

EDICT

All Eclipse dictionary items for all files. The ID for records in the file is the
Filename~DictionaryName. Example: PRODUCT~DESC.

ENTITY.LOG

Activity log information the System. This data is seen when accessing F2-S-
\Y

ENTITY.PN.IDS

Customer / Vendor-Specific Part numbers. This file is populated only when
customers or vendors are assigned a part number or if the Customer Product
Demand Index from the AR/Utilities is run.

FAX.LOG

Activity information about faxes that are sent out using the Eclipse system.

Release 8

UniVerse Data Structures with Report Writer and Mass Load Page 14

&

ACTIVANT

File Name

Contains...

GENLED

G/L account and G/L report template records. This file does not contain G/L
balances. The GENLED file has three indexes that can be used in selecting
one type of record or the other: &INDEX& for G/L accounts only,
&INDEX&.GRP for template groups only, and &INDEX&.ALL for all
records.

GL.BUDGET

Information entered on the GL Budget Maintenance screen.

INITIALS

Information entered on the User Maintenance screen, such as
user name, title, menu, message tune, keywords, etc.

LEDGER

All sales orders, cash receipts records, purchase orders, journal entries,
accounts payable invoices, and branch transfers. This file contains both
summary and detail line item information. The ID to the file is the sales
order#, purchase order#, etc. This file is rarely used in Report Writer. Detailed
information pertaining to shipped tickets should be retrieved from the PSUB
file. The following ledger-index files are used in Report Writer: AR,
ORDER.QUEUE, PRINT.QUEUE and PSUB.

LEDGER.LOG

All change logs associated with transactions.

MATRIX

All price matrix cells for the Sell Matrix and the Buy Matrix. It includes
matrix cells for customer classes, as well as customer-specific prices. The ID
to the file is BRANCH~Customer# or Class~Group or Product#~Effective
Date. Examples: ~C2~GWIRE~10354 or 1~4993~1684~10354

Use this file to create a report that will provide a list of matrix cells that are
about to expire.

MATRIX.DATES

This file works in conjunction with the MATRIX file and stores information
such as expire dates, original and remaining quantities associated with the
matrix record found in the matrix file.

MAINT.LOG

Audit change log information for any file for which maintenance logging has
been turned on.

MENUS

All menus created in Eclipse.

MESSAGES

All messages sent and received, until the individual users delete them.

MISC.DATA

Items from various sources, including commission plans, product families and
manifest information, quote maintenance, user’s last run report, and customer-
created product groups from Web Commerce. The ID is the Type
Identifier~ID. Example: COMM~INSSLS.

ORDER.QUEUE

Open Ledger transactions, such as open (not printed) sales orders, purchase
orders, and transfers. The ID to the file is the Ledger.ShipDate.GID. Example:
S1012300.10865.1 (GID =Generation ID) Once the order is processed the
information moves to the AR file and the detailed information moves to the
PSUB file.

OVERRIDES.LOG

Manual overrides to sell and cost values on purchase orders, sales orders, or
transfers, if the Log Sell Price, Purchase Price and Cost Overrides Control
Maintenance record is set to yes. This file is used for reporting purposes only.

PRICE-GRP

Information entered on the Buy / Sell Group Maintenance screen.

PRICE.LINE

Data related to setting up price lines in Price Line Maintenance, including
default units of measure, Basis Field names, and Basis assignments. Products
are linked to this file when a price line is assigned to the product.

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 15

&

Release 8

ACTIVANT

File Name Contains...

PRICE.LINE.BR Information that is branch specific/territory specific for the PRICE.LINE file
are posted to this .br file.

PRINT.QUEUE Ledger transactions that are queued to print. This file is updated from the Print
Status prompt on the Status screen of SOE, POE, and TOE. A/P invoices
(checks) are also in this file. The ID to this file is the Ledger#.GID. Example:
S10112300.1 (GID = Generation ID).

PRINT.REVIEW Transactions in the Open Order Status Review Queue.

PROCURE.GROUP Information entered on the Procure Group Maintenance screen Products are
linked to this file by the procure group entered on the product record or its buy
line record.

PROCURE.GROUP.BR | Branch specific information for Procurement Groups is stored in this .BR file.
Procurement group maintenance is found on the Maintenance menu in the
purchasing menu.

PROD.BR Branch specific / Territory specific information for the product file is stored in
this .BR file

PROD.CALC.BR Product branch specific/territory specific calculated data such as Average
Cost, Product Demand etc are stored in this .BR file

PROD.DYNAM Product on-hands, bin locations, average and last cost, and open orders for the
product in each branch. Links to the Product file.

PROD.LIFO All Product Lifo information, which is updated each time the Update routine
for the Lifo is run. This file exists only if your company does “Lifo”.

PROD.PRICE Prices and costs, such as List Price and Replacement cost, for each product.
The pricing information found on the Product Price Sheet Maintenance screen
is stored in this file. The product’s internal ID number is part of the key to this
file.

PRODUCT.NOTES Product notes entered using the Notes hot key in Product Maintenance. This
file has the same key as the product file therefore they are linked together.

PRODUCT.RENTAL Information entered on the Rental Product Maintenance screen.

QUAL.LOG Information generated through the Unquality Event Tracking entries.

RECURRING.JE Setup information for recurring journal entries.

REMINDER Reminder notes created in Customer or Vendor Maintenance. These notes can
also be created from the System Files Menu.

REPORTS List of reports generated within Eclipse and sent to the Hold file. The detailed
information regarding the reports is stored in the &HOLD& file. The date and
time stamp is included for the purging routine.

SCHEDULES Information entered in the Daily Scheduler.

SYSTEM.QUEUE All scheduled phantom processes. This file is dynamic in that the key to each
record changes each time the phantom processes an activity in the Phantom
Status screen.

TAX.CODES Information related to tax jurisdictions, such as tax rates and G/L posting
information.

UniVerse Data Structures with Report Writer and Mass Load Page 16

&

ACTIVANT

File Name

Contains...

TERMS

Customer and vendor-related terms entered on the Terms Maintenance screen.
It includes information on discount percents, discount days, due dates, service
charge percents, and service charge due dates. Customer maintenance, vendor
maintenance and sales transactions link to the Terms file.

TERRITORY

Information entered on the Territory Maintenance screen.

TRACKING.LOG

Call tracking information for all entities and users in Eclipse. The key to this
file is the Tracking ID number generated each time a tracker is created.

UD.WARRANTY

Warranty information entered on a user-defined screen when creating returns
from your customers. This is a user-defined file, which contains limited
information. You can enhance this file, based on how you handle warranties.

WHSE.OP.QUEUE

In-process RF transactions, until they are closed out.

WORK.MISC

Data from different sources, including saved Report Writer layouts, saved
Mass Load layouts, Print Price Sheets, Manifest Information, Product
Ranking, E-mail Standard Forms, Order Entry Clipboard (Ctrl-F5), Detailed
Daily Schedules, Physical Generations, Cycle Count Generations (RDC), and
F10 Quick Access information.

71pP

Zip code information entered on the Zip Code Maintenance screen. Each
Eclipse system contains all US 5-digit postal codes, including city and state
information. This file also contains the tax jurisdiction codes.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 17

&

ACTIVANT
File Definition Maintenance
Files are created and maintained in the File Definition Maintenance screen located on
your System Files Menu. The system uses these parameters for indexing the file, sorting
the file for display lists, and updating the file.

Only the system administrator should edit file definition parameters.

Note: This class does not discuss the creation of User Defined Files in Eclipse.

File Definition Maintenance

File Name : PRODUCT

Description : Product Master File

Physical File : PRODUCT

Parent File : PRODUCT

Dictionary File: PRODUCT Type :

Maint Logging : & — Save Deleted Items

Log Change Rsn : Y Min Days Before Purge : 130 Min # Logs to Save : 166
Select Index Dict ID : ZTHDEXZ Hot Svnc (¥/N) :
Select SortBy Dict ID: LINEZSEQ Prevent Mass Load {(Y/N} : N

Disp Conv Expr/Atth : TPRODUCT:1:1:¥
Input Validation Subr: YERF.PRD.ID
Pre-Index Conv Subr : DICT.SOUNDA
Update VYalidation :

Update Subr : UD.UPDATE.PRODUCT
Select Filter Subr :

New ID Verification : No New

Keep File in Sync With Parent (Y/N) : N

Dict [faint | Melete | [Branch Specific F12-Abort

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 18

&

ACTIVANT

Maintenance Logging

Maintenance logging settings are used to collect changes that are made to files in the
system. If a user changed the outside sales person in a customer’s record you may want
to know when the change was made, who made the change and what the value was prior

to the change.

If a user is not prompted for their reason, chances are the maintenance logging is not
turned on or requiring a reason for the change.

Below is a table that describes the different prompts for maintenance logging:

Field Description

Maintenance
Logging

Indicate whether the system should log changes made to records in
this file, and what type of information to log. Press F10 and select one
of the following:

o Disabled — No maintenance logging occurs. This is the default
value.

e 1-Update Only — The log records the date and time of the
update.

e 2-Attr Only — The log records the date and time of the update
and the attribute that changed.

e 3-Attr W/OId Values — The log records the date and time of
the update, the attribute that changed, and the attribute's old value.

e 4-Save Deleted Items — In addition to recording the
information described in option 3, the system also stores deleted
records in the log.

Log Change
Reason

Indicate whether the system should prompt you to enter the reason for
change when you press Esc after making the change:

e Y — Displays the Reason for Change screen, which prompts
you to enter a reason.

e N - Does not prompt you to enter a reason for the change.
This is the default value.

If maintenance logging for this screen is disabled, skip this field.

Min Days Before

Enter the number of days to keep a log message before the system

Purge can delete it.
Min # Logs to Enter the minimum number of messages the system should keep,
Save regardless of the number of days they have been in the log.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 19

&

ACTIVANT
File Definition Parameters

The following table describes the different parameters that can be set in the file definition
maintenance screen that deal with sorting, displaying and updating records within the file.

Field Description

Select Index
Dict ID

Defines the dictionary that indexes this file.

Enter the dictionary item to index the file. This is usually set to the name
of the key field, which Eclipse calls &INDEX&.

If the Parent File is ENTITY or PRODUCT, you get the indexing
capabilities of that file. Otherwise, you get the indexing capabilities
defined in the File Definition Maintenance screen. Leave this field blank
to select on record IDs.

Select SortBy
Dict ID

Defines how a menu table, which lists the results of a search, sorts
before it displays.

Leave this field blank to sort on record IDs. Otherwise, enter the
dictionary item by which to sort the file.

Disp Conv
Expr/Attb

Displays the conversion expression/attribute, which defines the text
describing the items displayed in a menu table. Menu tables list the
results of a search.

Leave this field blank to use the record ID. Otherwise, enter the name of
the file attribute to display or enter an expression using PICK correlative
commands.

Input Validation
Subr

Identifies the subroutine the system uses in validating input data. If
defined, the subroutine in this field overrides the subroutine in the Index
Dict ID field.

Pre-Index Conv
Subr

Identifies a conversion subroutine, which the system uses to remove
unnecessary characters in attributes before indexing them.

The only pre-index conversion subroutine the system uses is
DICT.SOUNDA.

Update
Validation

Identifies the subroutine to call for validating data in a record within the
file.

Update Subr

Identifies the subroutine to call for running another program whenever a
user updates a record in this file.

For example, you can have a subroutine that sends a message to the
credit control manager whenever someone updates the credit controls
file.

Note: The subroutine must adhere to Eclipse standards to work
properly.

Select Filter

Identifies the subroutine to use to filter the displayed items.

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 20

&

ACTIVANT

Subr
New ID Indicates whether you can enter a new record using a user-defined
Verification screen. Select one of the following options:

e No New - You cannot enter a new record from a user-defined

screen. This is the default value and the designation used for all

standard system files.

e Sequential — The system assigns a unique ID to a new record.

o Free Form — The user can assign a unique ID to a new record.
Keep File in Indicates whether to keep the Physical file and Parent file in sync.
Sync with

For example, when set to Y, when you delete a record from the Parent

L (A file, the system also deletes the record from the Physical file.

The only time one would need to set this flag is if a new file is being
created that is linked to a parent file and you want the two files to always
be in sync with each other.

Hot Sync (Y/N) Indicates whether this file should sync with the Hot Swap Server.

Prevent Mass Indicates whether the system prevents users from mass loading
Load (Y/N) information to this file. The default is N.

Note: Before you can change the setting of this field, the file must be
listed in the Valid Files control maintenance record.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 21

&

ACTIVANT

File Definition Maintenance for a Branch Specific File

Earlier in this lesson we discussed the fact that some files have “parent” files. The
branch specific files are files that use the parent file model. The parent file is the file
used for the reporting and mass loading of data because the dictionary file is pointing
directly to the parent file. However the actual data is stored in the physical file described
by the file name.

Note in the example below that the Prevent Mass Load is set to a Yes. This does not
limit you from mass updating data to the file, all this means is that the mass load will be
conducted through the parent file of PRODUCT.

File Definition Maintenance

File Name : PROD.BR

Description : Branch specific product information

Physical File : PROD.BR

Parent File : PRODUCT

Dictionary File: PRODUCT Tupe : AppData

Maint Logging : 3 - Attr W/01ld Value

Log Change Rsn : Y Min Days Before Purge : Min # Logs to Save :
Select Index Dict ID : Hot Sync (Y/N) :
Select SortBy Dict ID: Prevent Mass Load (Y/N) : VY

Disp Conv Expr/Atth
Input Yalidation Subr:
Pre-Index Conv Subr
Update VYalidation

Update Subr - UD.UPDATE..PROD . BR

Select Filter Subr :

New ID VYerification : Mo New

Keep File in Sync With Parent (Y/N) : ¥

Dict [aint | [Melete Branch Specific F12-Abort

A very important element of the branch specific files is the Branch Specific option we see
on this screen. Notice in the above figure it is highlighted. This is an indication to you
that an attribute within the file is storing the branches and territories that contain data.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 22

&

ACTIVANT

By accessing this option we see that the branches containing data in this file are stored on
attribute 40. Later when we discuss attributes and dig deeper into the branch specific file
set up this will make more sense. What is important now is that you know you have a
place to go to find where the branch listing is stored within a branch specific file.

File Definition Maintenance

File Name : PROD.BR

Description : Branch specific product information

Physical File : PROD.BR

Parent File : PRODUCT

Dictionary File: PRODUCT Type : AppData
Maint Logging : 3 - Attr W/01d Value

Log Change Rsn : Y Min Days Before Purge : Min # Logs to Save :
Select Index Dict I ot Sync (Y/N) :

Select SortBy Dict |Enter the branch attribute: 40 ss Load (Y/N)} : ¥
Disp Conv Expr/Attb
Input Validation Su
Pre-Index Conv Subr
Update VYalidation

Update Subr - UD.UPDATE .PROD .BR

Select Filter Subr :

New ID Verification : No New

Keep File in Sync With Parent (¥/N} : ¥

Dict Maint | Melete | Branch Specific F12-Abort

This attribute is never changed by the end user (that’s you). Any file that is a branch file
will have the appropriate branch setting assigned here.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 23

&

ACTIVANT

Lesson 3
Eclipse File Structure

Objectives

After you complete this lesson, you will be able to:

Understand Eclipse files, records, and attributes
Recognize multi-values and sub-values

Use TCL to view the raw data in a file

View the dictionary items defined for a file

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 24

&

ACTIVANT
Eclipse File Structure
The Eclipse file structure can be compared to a file cabinet.
Eclipse Account — A drawer in the file cabinet.

Files — Folders in the drawer. For example, there can be separate folders for customers,
products, and invoices.

Records — Paper in the folders. For example, a customer folder contains a separate sheet
of paper for each customer. Each record has a unique identifier, referred to as an @ID or
KEY. It can be almost any combination of alphanumeric characters, with no spaces.
Attributes/Data Elements — The lines or fields of information on the paper. For
example, in a customer record, the name, address, phone number and billing terms are
attributes.

The record key is always stored in attribute 0.

Attributes can have multiple values and values can have multiple sub-values.

File Cabinet Database File Structure Eclipse Example
Drawer Account Eclipse software package
Folder File ENTITY
Page of information Record ABC Company’s ID
Lines (fields) of information on | Attributes/Data Elements Address for ABC Company
each page Multi-valued

Sub-Valued

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 25

&

ACTIVANT
Attributes, Values, and Sub-Values

Eclipse records are variable-length. In the raw data file, markers separate attributes,
values, and sub-values. The following example lists some attributes in a customer record.
In Eclipse, customer records are stored in the “ENTITY” file.

200 Attribute 0
0001 Goldberg Boyle Brogan & Shusman PC Attribute 1
0002 Cherry Hill Corporate Center * 535 Route 38, Suite 300 | Attribute 2
0003 CHERRY HILL Attribute 3
0004 NJ Attribute 4
0005 08002 Attribute 5

Attribute 0 — The number 200 represents the @ID or key of the record. The record key is
always stored in attribute 0.

Single-Value Attributes — Attribute 1 contains the customer name, which is a single
string of information stored as one value. The information stored in an attribute number is
consistent for every record in a file. In this example, the customer name is stored in
attribute 1 for every customer in the Eclipse database.

Multi-Value Attributes — Attribute 2, the street address, is multi-valued. The 2 between
“Center” and “535” is a value marker that represents the separation between the first and
second value.

Sub-Values — Values can contain sub-values. Sub-value markers (") separate multiple
sub-values. The following is an example of the credit information for a customer.

This data is stored in attribute/data element 0022 in the ENTITY file. This attribute
shows the credit limit, past due limit, job limit, days past due, deposit on stock items and
non-stock items.

Credit Limit : 20000.00 Deposit#, Stock Ttems: 10
PastDue Limit: 150680 .00 Days: 180 Deposit’, Monstocks :108
Job Limit : 999 .0A Terms Code: 95 Override Inv Terms: N

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 26

&

ACTIVANT

The raw data would display the sub-value markers and value markers as follows.

0022 2@@@@@@'}15@@@@@" 999@@; 10°10"100

Sub-value Value

There are commands we will learn to view the raw data as we see above.

It is possible for the system to have values that are sub-sub-valued (a sub-value of a sub-
value). The system displays this information using the square root symbol.

We will discuss this type of data structure later in this class.

150 26962%*-1*-1%*5"*7038000000° 7033000000 2240000000 2240000000° * * 0921904257 +
21222222 2 2220 p IS 7263057 62% —104-12241-2242* ** * 2 * G| SICOGSTINYTY

151 2664%%%-2%-2°25723519000000° 3519000000 1378000000°1373000000* * * 0921964257 +
21522222 2 222N h h 57263057 62° - 104-12760-276%* ** * £ * G SICOGSTINYTY

152 2638%2*-1*-1°*57*3001000000° 3001000000 1172600000°1172000000* * * 0921964257 +
215522 12 207 hA1d57 263057627 -300 11 74-117°* ** * * *SLS{COGSTINVTY

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 27

&

ACTIVANT

Viewing Raw Data in a File using TCL

Eclipse Terminal Control Language (TCL) commands enable you to view the raw data

stored in files.

Report Writer/Mass Load enables you to take raw data, manipulate it, and display it for
analysis and interpretation. To understand how you can use Report Writer, you must first
understand the TCL commands and be able to view raw data.

Use the following TCL commands to display raw data:

Command

Function

LIST.ITEM

Lists all the records in the file showing the attribute numbers and raw
data for the attributes that contain data.

CT

Copies a record to the terminal, showing all of the attributes, even
those containing no data.

DISP

Displays a record, showing the dictionary IDs and raw data for the
attributes that contain data.

SORT.ITEM

Sorts the records by their Key or @ID and then displays a record,
showing the attribute numbers and raw data for the attributes that
contain data.

LIST

By default, displays only the Key or @ID of the records within the
file. You can also use this command to display record data on the

screen or send data to the printer. This function is discussed in Lesson
4.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 28

&

ACTIVANT

Rules for using these commands:

e The name of the file to which the record belongs must appear directly after the
command.

e The internal ID of the record must appear after the file name when using the CT
command.

For example, to view the raw data for the customer who has an internal ID or key of 100,
enter the commands as follows:

LIST.ITEM ENTITY 100
or

CT ENTITY 100
or

DISP ENTITY 100

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 29

&

ACTIVANT
Exercise 3.1

In Product Maintenance, display a product.

Note the Product ID and record the following information as you see it on the
screen:

e Price Line
e Buy Line
e GL Account/ Product Type

Use a TCL command to view the raw data for this product.

Record the information as you see it on the screen and note the corresponding
attribute numbers.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 30

&

ACTIVANT
Dictionary Maintenance Summary Screen

The Eclipse dictionary is a tool you can use to identify and access the data stored in the
Eclipse data files. User-defined dictionary items associate names and report formatting
characteristics with each attribute/data element stored in the Eclipse data files. All
dictionary items reside in the EDICT file.

The Report Writer/Mass Load program uses the Eclipse dictionary to display raw data in
a format you can understand.

Use the Dictionary Maintenance Summary screen to display the dictionary items defined
for any validated file in Eclipse.

Dictionary Maintenance Summary
File Name :ENTITY
Dict ID—————Deszscription————TypsAttrValTSubvsJustsiidth—Conv=
(CIN] @ID D @ L 35
CUST_ID Customer ID D 0 R 10 MR
VYEND_ID Vendor ID D @ R 10 |MR
$NAMES Entity Hame D 1 L Ja
NAME Entity Hame D 1 L 35
ADDRESS Entity Address D 2 L 35
ADDRESS?2 Address Second Line D 2| 2 L 35
CITY City D 3 L 20
STATE State D A L 2
$7IP_CODE%$ Zip Code D) R 10
ZIP _CODE Zip Code D 5 R 10
COUNTRY Country D 6 L 15
ENTITY _TYPE Entity Type MY by position| D 1 L 1|MRO
IS_BILL_TO Is Bill To Customer D 11 1 R 1[¥N
IS_SHIP_TO Is Ship To Customer D 12 R 1|¥N
IS_BR_ENTITY Is Branch Entity D 1 4 R 1(¥N
$1S_PAY_TO% Is Pay To VYendor D FARR R 1
4 of 3967
EBdit Dict | M-Desc | Efipand Desc | Bortby | [Hrint Listing | Sellect " Hiew ”

In the example shown above, there are 396 dictionary items defined for the ENTITY file.
The first 17 are displayed. The Attr column shows the attribute/data element number to
which a dictionary item is assigned.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 31

&

ACTIVANT

It is possible to create multiple dictionary items in Eclipse for the same attribute or field
of information. Any dictionary item that is flagged as an Eclipse Dictionary will appear
in view-only format.

To locate a dictionary item:

e You can use the Sortby hot key to sort the list by attribute number or Dict ID, and
then scroll through the list.

¢ You can also use the Select hot key to filter the list. Enter selection criteria based
on the dictionary ID, description, dictionary type and Archived Dictionaries.

Dictionary Selection Criteria

Dict ID :
Description Pattern Search :
Dictionary Type :
Show Archived Dictionaries : N

Dictionary ID is used if you know the dictionary you want to select out of the
list. This will clear the entire Dictionary Summary screen with the exception of
the dictionary item you enter on this prompt.

Description Pattern Search is used if you do not know the dictionary id, but you
have an idea of what the description is. This will search on any word within the
description of the dictionary. Remember, the less you key in the more options
you will get. The more you key in the less number of options will appear.

Dictionary type is used to show either D type dictionaries (Data Elements) or |
type dictionaries (I-Descriptors).

Show Archived Dictionaries are only relevant if you were using the Eclipse
software application during release 7. Release 8 and above are using new and
improved data elements for reporting and mass loading. However, Eclipse never
purged out the old dictionaries. Instead we archived them so that users could see
what dictionary items they had created in release 7.

Most dictionaries (not pointing to a branch specific value from release 7) that are
archived are good dictionaries and work fine. They are not however using the
new standards we have in place in release 8.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 32

Field Descriptions

&

ACTIVANT

The fields on the Dictionary Maintenance Summary screen provide the following

information:

Field Description

Dict ID Dictionary ID assigned to the attribute. An attribute can have
multiple dictionary IDs.

Description Functional description of the dictionary item.

Prompt The default column heading for the selected data when printed on a
report and the prompt for this information if used in a Report Writer
Select statement with a variable value. This field displays in place
of the Description field when you press the View hot key.

Typ Dictionary item type:

e D (Field Definition) — Information stored within a record, also
known as an attribute or field.

e [(Interpretive Descriptor) — A symbolic field derived from
manipulation of data or a formula.

Attr Numerical position of the attribute (field) within a record.

Val Numerical position of a value within a multi-valued field.

Subv Numerical position of a sub-value within a multi-value.

Just Indication whether the data in this dictionary item should be left
justified or right justified on a display/report column. Typically,
text is left justified and numbers are right justified. Dates should be
right justified. Some numbers such as UPC and Zip codes are left
justified so that a preceding zero does not get removed.

Width Character width of the display/report column for the data.

Conv Pick output conversion code that determines the display/report
format of the data. Conversion codes can be found in this
workbook in a later lesson.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 33

&

ACTIVANT
Hot Keys
The hot keys on the Dictionary Maintenance Summary screen provide the following
functionality:
Hot key Lets you...
Edit Dict Edit the dictionary item on the Eclipse Dictionary Maintenance screen.
I-Desc Edit the I-Descriptor formula, if this item is an [-Descriptor.
Expand Desc Displays an expanded view of the description field. The expanded
description contains 3 lines that are 60 characters wide.
Sortby Sorts the displayed dictionary items numerically by attribute number or
alphabetically by Dict ID
Print Listing Sends a copy of the currently displayed dictionary file summary to your
Hold file or default printer.
Select Displays only the dictionary items that match selection criteria based on the
dictionary ID, description, and type.
View Toggles between displaying the Description field or the Prompt field for
each dictionary item.
Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 34

Release 8

&

ACTIVANT

Example of Multi-Values in Dictionary Maintenance Summary

To recreate the following example, display the Dictionary Maintenance Summary screen
for the ENTITY file. Then use the Select hot key and enter freight as the description

selection criteria.

The numbers displayed in the Val column for attribute 7 indicate the multi-valued
position the data is being stored for the data element represented on the screen. Each
value represents something different for attribute 7.

Dictionary Maintenance Summary——UEIRNNE————
File Name :ENTITY
——Dict ID— Description TypTAttrYalTSubvrJustThid th—=Conv=
ZIP_CODE Zip Code D 5 R 10
COUNTRY Country D 6 L 15
ENTITY_TYPE Entity Type MY by position| D Ki L 1|MRG
IS _BILL_TO Is Bill To Customer D i 1 R 1|¥N
IS _SHIP_TO Is Ship To Customer D 1 2 R 1|¥N
IS_BR _ENTITY Is Branch Entity D | & R 1|¥N
IS_PAY_TO% Is Pay To Vendor D 11 5 R 1
IS _PAY_TO Is Pay To Vendor D 11 5 R 1
IS_SHIP_FROM Is Ship From Yendor D 1l 6 R 1|¥YN
IS_BR_ACCOUNT |Is Branch Cash Account Cus| D FI R 1|¥N
IS_FREIGHT_VEND |Is Freight Yendor D |l 8 R 1|¥N
IS_PROSPECT Is Prospect Customer D 11 9 R 1|¥N
IS_MFR Is WManufacturer Yendor D 1] 10 R 1
$SORT_BY$ Sorts ENTITY file D 8 L 12
SORT_BY Sorts ENTITY file D 8 L 12
INDEX Index (used for searching)| D 9 L 35
$BILL_TO%$ Bill To ID (for Ship Tos) | D 10 R 10 |MRO
27 of 3967
Edit Dict | M-Desc | Efipand Desc | Bortby | Brint Listing | Sellect " Hieuw "

When viewing a customer or vendor you may have noticed bullet points that appear to
the right of the customer or vendor’s name and address.

Customer/Mew :

11796

Customer Maintenance

Name

City
Zip 102332
Sort By:EKBHAR
Bill :

Index

‘HARRY EKBLUM
Address:204 SURPLUS STREET

: DUXBURY

ST:MA Country:

:HARRY EKBLUM

— —— — — Q

11790

=) Bill To
=) Job or Ship To

) Branch Cash Acct
) Prospect

N) P0/Release# Required
) Auto-Delete

Contacts

OO~ QO N =

Phones
617-741-4576

Bal Fwd/Open Item: O

B/0 Status: H

Dfl1t Out Salesperson: WALKEY
Df1t In Salesperson : WALKEY
Df1t ShipVia:

Frt In Exempt (¥/N) : N

Frt Out Exempt (Y/N)}: N

UniVerse Data Structures with Report Writer and Mass Load

Page 35

&

ACTIVANT
The raw data for the entity @ID 11790 appears as follows:

LIST.ITEM ENTITY 11790 12:18:04pm 83 Jun 2004 PAGE 1

11790
001 HARRY EKBLUM
002 204 SURPLUS STREET®
003 DUXBURY
004 MA

gg? ?2?32 < Note the value marker that

008 EKRBHAR separates the bill-to flag from

009 HARRY EKBLUM the ship-to flag.
13 1

014 11790

016 °°

017 617-741-4576
922 nznn

P24 1"2"3"4"5"6"8°1"1"1"1"1"1"1
038 1

039 *

041 WALKEY

043 X

044 WALKEY

045 N

Attribute 7 contains two values separated by a value marker (*). For this dictionary item,
a value of 1 indicates that the field is set to “*.” In this case, both the first and second
values are set to “1.” This corresponds to the “*” settings on the Customer Maintenance
screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 36

&

ACTIVANT

Example of Sub-Values in Dictionary Maintenance Summary

The as discussed earlier, credit parameters of a customer are entered using the Credit
option from the customer file maintenance screen. This information is stored not only as
multi-valued, but sub-valued as well. This means that each value can have multiple
values within.

For example the credit parameters for entity @ID 832 looks like the following:

Credit Control Parameters
() Use Default {) Use Bill-To

) Always COD

) COD when credit limit exceeded

) Print approval required message on all shipping tickets

) Print approval required message when credit limit exceeded

) No Order Entry

) Ho Order Entry when credit limit exceeded, unless authorized
} No Order Entry, regardless of credit limit, unless authorized
)
)
)
)
)

No printing of shipping ticket when credit limit exceeded, unless auth
No printing of shipping ticket, regardless of credit limit, unless auth
Only customer’s authorized personnel may place orders

Company checks accepted

Personal checks accepted

Apply credits to oldest buckets when aging account

Credit Limit : 10000.00 Deposit#, Stock Items: 8
PastDue Limit: 1000.80 Days: o5 Deposit¥, Nonstocks : 58
Job Limit : 500.00 Terms Code: N30 Override Inv Terms: N

Muthorized Personnel | Mefault Credit Card Info | Add’1 [Bredit Data | [EFT

If we open the dictionary maintenance summary screen we can find that the credit limit
we see on the screen is located on attribute number 22 in the first value and in the first
sub value of value 1.

Dictionary Maintenance Summary—HINN————
File Mame :ENTITY
————Dict ID——F—Description———TyprAttr~Yal7SubvrJustidth—Conuv—
WIP UNIT _COSTS (Work In Process Unit Costs| D 21 &l R 15|MR2
CREDIT_LIMIT Customer credit limit D 22 1 1/ R 11 |MR2
JOB_LIMIT Job Limit D 22 1 3| R 11 |MR2
PAST_DUE_LIMIT |Customer Past Due Limit D 22 1 2| R 11 |MR2
NS_DEPOSIT Deposit amount required fo| D 2| 2 3 R 3 |MRO
PAST_DUE_DAYS |Customer Past Due Days D 2| 2 1| R 3 |MRO
STOCK_DEPOSIT |Deposit amount required fo| D 2| 2 2| R 3 |MRO
CREDIT Credit Specifications D 23 R 9
IS_COD Is Cod Customer 1] 23 1 R 1(YN
IS_COD_CREDIT |Is Cod Customer when credi| D 23| 2 R 1(YN
REQ_APPROYAL Print approval required me| D 23| 3 R 1(YN
REQ_APPROVAL_CR |Print approval required me| D 23| 4 R 1(YN
NO_OE No Order Entry D 23| o R 1
NO_OE_CREDIT No Order Entry when credit| D 23| 6 R 1
NO_OE_AUTH No Order Entry regardless | D 23| 1 R 1
NO_PRINT_CREDIT |Mo printing of shipped tic| D 23| 8 R 1|¥N
NO_PRINT_AUTH |Mo printing of shipped tic| D 23| 9 R 1|¥N
63 of 3967
Bdit Dict | H-Desc | Efipand Desc | Bortby | Erint Listing | Sellect " Miew ”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 37

&

ACTIVANT

The raw data for entity @ID 832 appears as follows:

LIST.ITEM ENTITY 832 12:21:43pm 83 Jun 2004 PA

001
002
003
004
005
006
007
003
009
013
014
016
017
022
023
024
028
031
033
034

832
MIKE LAMB. INC

HUMMOCK POND RD*P 0 BOX 299
NANTUCKET

M

02554

usA

1°1

LAMMIK

HIKE LAHB. INC 7521 LANHIK
832

*FAX?

508-228-0635°

1099900 100000"50000°5"0"50 +———
1"2"3"4"5"6"8°1"1"1"1"1"1"1

N3O

1°1

M

04-2440843

The separation of each value is represented by the superscript “2”” and the separation of
the values within each value is represented by the superscript letter “n”.

Release 8

UniVerse Data Structures with Report Writer and Mass Load Page 38

&

ACTIVANT
Exercise 3.2

1. From the Files / Eclipse Dictionary... menu, select Dictionary Maintenance
Summary to display the Dictionary Maintenance Summary screen.

2. Display the attributes of the ENTITY file.

3. Find attributes that contain a:
e Single string of data

e Multi-valued string of data

e Multi-valued and sub-valued string of data

4. Using TCL, view an ENTITY record in its raw data format.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 39

&

ACTIVANT
Branch Specific Data File Structure

Sometimes you may here the terminology “product master” or “customer master”. The “master”
is used when we are referring to the main parent file. The branch specific file is linked to the
parent or master file for you.

The PRODUCT file (parent/master) has two linked files:
PROD.BR
PROD.CALC.BR

The data elements for the branch specific files are actually used FROM the parent file.
Therefore you would never create a report writer or mass load using the PROD.BR or the
PROD.CALC.BR file. Instead you would use the PRODUCT master file.

PROD.BR File

The Dictionary Summary Screen for the PROD.BR file will display the name of the data
elements for the data being stored in this file. This information is mostly static
information, meaning that it is not calculated by the system.

Dictionary Maintenance Summary

File Mame :PROD.BR
Dict ID—= Description =TypsAttr=¥al=SubvsJustsiidth—=Conv=
MANUAL_MIN Manual Minimum Inventory L| D 2 R 6
MANUAL_MAK Manual Maximum Inventory L| D 3 R 6
BUY_PKG Purchase Package Quantity | D & R 6
TREND Trend Percentage D) R 3 |HRO
SERVICE _STOCK |Service Stock Quantity D 6 R 5|MRO
$LOST.SLS.CTRL% [Lost Sales Control¥ D ki R 4 |MRO
$LOST_SLS_CTRL% [Lost Sales Control¥ D 1 R 4 |MRO
LOST_SALE Lost Sales Percentage D ki R &
LOST_SLS_# Lost Sales Percentage D 1 R 4 |MRO
BCKRD_TLRHC_QTY |Backorder Tolerance Quanti| D 8 R 6
EXCP_SLS_% Exceptional Sales % D 8 1 L &
FCAST .METH Forecast Method D 8| 2 L 10
FORECAST_METHOD [Forecast Method $ = Standa| D g8 2 L 1
BTQ Backorder Tolerance Quanti| D 8| 3 R J|MRO
EQQ_% EOQ % D 9 R > |HRO
EQOQ_PERCENT Economic Order Quantity Ca| D 9 R 7|HD2
EOQ_% EOQ % D 10 R 5|HR2
19 of 657
Edit Dict | I-Desc | Efipand Desc | Bortby | Brint Listing | Sellect ” Hiew "
Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 40

&

ACTIVANT

As you can see, data such as the product’s Lost Sales Percentage, Exception Sales
Percentage and EOQ information are some examples of the type of data stored in this file.
These dictionary items are found in the PRODUCT file for use in Report Writer and
Mass Load.

The system will have a main record for an item as well as branch specific records (if
cached). Below is the main record for @ID 9111 in the PROD.BR file. In lesson 2 we
looked at the file definition maintenance screen for the PROD.BR file and we found that
the branches attribute is listed as attribute 40.

9111
004 10
005 °
007 20°
008 50°""
009 28°
010 100°
015 *
017 ®
020 *
023 KOH
024 KOH
025 0
027 1*°0
033 °
040 ALL*EP*1 <
051 15°
056 13449°
058 0

This information only appears on the main record within the file. However by looking at
the main record one can surmise that there will be 1 other record in this file for this item

that contains the branch specific data if the records have been cached. This record will
have an internal id or @ID of 9111%*1.

What is a cached record?

In the branch specific files, the system will create a new record for branch specific data.
This creation occurs when any branch data for the record is viewed. This can include
looking up the inventory inquiry screen that will display branch specific data or it can
include looking at branch specific data for an item in product file maintenance.

This happens automatically by the system and is done to increase system performance
when viewing the branch data for items.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 41

&

ACTIVANT

Below is the branch specific data for the record described and shown above. One thing to
note is that the attribute 40 on the branch specific record is nonexistent. This record is a
cached record and is created when a user views branch specific data for a product. This
includes the inventory inquiry screen.

004
007
008
009
010
623
024
025

9111=1
10

20

o0

28

100
KOH
KOH

]

021 8

651
056
058

15
13449
]

This is the Branch 1 record for @ID 9111. Notice in the @ID there is an asterisk
separating the product @ID from the Branch number.

Exercise 3.3

1. Find a product in Product File Maintenance.

2. Set the Lost Sales Percentage and Exceptional Sales Percentage for
Branch 1.

3. Display the item on your screen in TCL using one of the commands you
have learned.

4. Find the attribute/data elements your data is stored in.

5. Verify your findings in the Dictionary Summary Screen.

Release 8

UniVerse Data Structures with Report Writer and Mass Load Page 42

&

ACTIVANT
PROD.CALC.BR File

The system calculated data such as hits, demand etc for an item are stored in the
PROD.CALC.BR file. Just as we saw in the PROD.BR file, this file will have a main
record which shows all of the branches the calculated data has been updated to. Each
branch will then have its own record if it is cached. The @ID will display with the
product’s @ID”*” BRANCH.

The dictionary summary screen for this file shows:

Dictionary Maintenance Summary——0T0HMII————
File Hame :PROD.CALC.BR
——Dict ID=———F——Description—————lypFAttrValTSubvsJustTlidthTConv=
PROD_CALC_BR_ID |hternal Id for the Produc| D 0] L 13
RANKS Multiple value listing of | D 1 L 1
LAST_CALC_DATE |Date the product was last D 2 R 16 D4/
BR_HITS Number of Hits for the dem| D 3 R 5
DEMAND_PER_DAY |Calculated item demand per| D 4 R 16 (MR3
LEAD _TIME_DAY |Purchasing lead time in da| D 5 R 3
LOW_SALE_QTY Lowest sales quantity duri| D 6 R 5
EOQ_QTY Economic Order Quantity fo| D ¥ R 6
DEMAND_PERIOD |Mumber of days in the dema| D 8 R 3
RAW _HITS Raw hits for the demand pe| D 9 R 6
RAY_DEMAND Raw demand for the demand | D 16 R 6
DAYS_0OUT Number of days that the pr| D 11 R 8
AVERAGE_COST Average Cost D 12 R 16 (MR3
LAST_COST Last Cost D 13 R 10 |MR3
LANDED_RAYERAGE_ |Landed Average Cost D 14 R 10 |MR3
LANDED_COST Last Landed Cost D 15 R 10 (MR3
FRZMN_AVERAGE_CO [LIF0 frozen average cost D 16 R %ﬁ ¥R3 o
o i
Bdit Dict | M-Desc | Efipand Desc | Bortby | [Erint Listing | Sellect ” Uiew "

Note: under no circumstances will a mass load occur against this file directly.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 43

&

ACTIVANT

Below is an example of the calculated data in Branch 1 for an item. This record is a
cached which is why the *1 appears as a suffix to the internal id of the product. If the
branch cache records were to be deleted, this record would be removed from the system.
When branch specific data is viewed for the item, the system will automatically rebuild

the cache record.

9111=1
001 A*A*A*E°E
002 8135
603 18
004 47
006 1°1
607 1
808 365
009 18°18
010 17
611 8
012 176487
013 180089
014 176487
815 150089
016 176487
017 180089
018 176487
019 180089
820 12376
621 2

Exercise 3.4

6. Find a product in Product File Maintenance.

7. View the ranks and the Demand Audit screen for Branch 1.

= Ranks are found off of the pricing hotkey.

* Demand Audits are found off of the Inventory hotkey.
8. Display the item on your screen in TCL using one of the commands you

learned.
9. Find the attribute/data elements your data is stored in.
10. Verify your findings in the Dictionary Summary Screen.

Any file that is designated as a Branch Specific will have a branch attribute. As we
discussed in Lesson 2 this attribute number can be located using the File Definition

Maintenance screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load

Page 44

&

ACTIVANT

Lesson 4
Selecting and Listing Data in TCL

Objectives

After you complete this lesson, you will be able to:

e Understand TCL retrieve verbs
e C(reate a saved list in TCL
e Create a basic report using a saved-list

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 45

&

ACTIVANT
Using the Select Retrieve Verbs

In the previous lesson you learned how to use the CT, LIST, LIST.ITEM, and DISP
retrieve verbs to list the contents of a single or multiple records.

The following TCL verbs enable you to select groups of records within a file:
e SELECT - sclected records are listed in random order.

o SSELECT - sclected records are sorted by the @ID or key.

The same technique we learn here is also applied in Report Writer and Mass load.

Retrieve Sentence Structure

The following rules apply when using the SELECT and SSELECT retrieve verbs:
e The retrieve verb must be the first word, indicating the action you want to take.
e The file name must follow the retrieve verb, indicating the file you want to select.
e The selection criteria must follow the file name and use the following syntax:
WITH Attribute name Operator Reference
Reference can be another attribute name or a literal value within quotes.
The following table lists the available operators.

Note: If you don’t put the AND/OR in between dictionaries, then you have an implied OR
in the dictionary before the values.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 46

Retrieve Sentence Operators

&

ACTIVANT

Operators are in important when narrowing the number of records to the select list you want to

obtain.

Use this To select a record if the attribute value...
Operator...

is equal to the reference value.

EQ
EQUAL

is not equal to the reference value.
NE
NOT
NO
<>
><

> is greater than the reference value.
GT
AFTER
GREATER

< is less than the reference value.
LT
BEFORE
LESS

>= is greater than or equal to the reference value.
GE

<= is less than or equal to the reference value.
LE

Examples
To list all the customers and vendors in the state of NJ:
:SELECT ENTITY WITH STATE = “NJ”

;SSELECT ENTITY WITH STATE = “NJ”

To list customers and vendors who do not exist in the state of NJ:

;SELECT ENTITY WITH STATE # “NJ”

Release 8 UniVerse Data Structures with Report Writer and Mass Load

Page 47

&

ACTIVANT

Exercise 4.1
1. Using TCL, write a command to select a list of customers and vendors that have a
ship via of OT OUR TRUCK.

Hint: Display the ENTITY file in the Dictionary Summary Maintenance screen and
then use the Select hot key to find the ship via attribute.

Multiple Selects

There are two ways to select records that meet multiple conditions. For example, list all the
customers and vendors in the state of NJ whose address is within a range of zip codes. You can
write:

¢ One select statement that uses multiple selection criteria, as shown in the following
example.

SELECT ENTITY WITH STATE = "NJ” AND WITH ZIP > "07635" AND WITH ZIP < "08055"

47 record{s) selected to SELECT list #0.

e Successive select statements in which each uses one selection criteria. Each successive
select statement only applies to the records selected by the previous statement.

;SELECT ENTITY WITH STATE = "NJ”

213 record{s) selected to SELECT list #0.
:SELECT ENTITY WITH ZIP > "07635" AND WITH ZIP < "08655"

41 record(s) selected to SELECT list #0.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 48

&

ACTIVANT
Exercise 4.2
1. Using TCL, select products that are stock items and belong to buy line COPFIT.

Wild Cards

Use wild cards to select information that begins with a value, ends with a value, or
contains a value. Following are examples using different wild card formats. If you do a
select on a file that contains “Bob,” “Rob,” “Ben”, and “Abe,” the results you get will
differ according to the wild card format you use.
Beginning with a value.

“B]” This option selects “Bob.”
Ending with a value.

“IB” This option selects “Rob” and “Bob.”
Containing a value.

“IB]” This option selects “Bob,” “Ben,” “Rob” and “Abe.”
Place-holding for the value. Use place-holding to determine where the value is stored in
the string. Use the following wild card to find every value that contains an E as the

second letter.

““E]” This option selects “Ben.”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 49

&

ACTIVANT
Exercise 4.3

1. Using TCL, select all entities that reside in the state of NJ and have a ship via
containing the word “TRUCK.”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 50

&

ACTIVANT
Saved Lists

Once you have selected records, you can save the list. You can utilize a saved list in the

Report Writer / Mass Load Program, Print Price Sheet Program, or TCL program, or
simply list the data directly to the TCL screen.

To save a selected list, use the SAVE-LIST command. For Example:

SAVE-LIST sHIPvVIA

There are two rules that apply to this command.
= The list must be assigned a name for retrieval purposes and
* The name cannot contain spaces.

To retrieve a saved list, use the GET-LIST command. For Example:

GET-LIST sHIPVIA

Exercise 4.4
1. Save the list that you created. Use your initials as a prefix and SHIPVIA for the name.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 51

&

ACTIVANT
Listing Saved Data

Listing data in TCL is limited, because you see the data in its raw form. Listing data
using the Report Writer/Mass Load program is much better, because the raw data is
converted to an understandable format. If you understand the file structure and TCL
commands, then you will have a better understanding of what the Report Writer/Mass
Load program can do for you.

To list data in TCL the command structure is as follows:

LIST filename attribute-name attribute-name attribute-name

The LIST command displays the record key and the raw data in each designated
attribute.

For example, the following command lists the record key and the raw data stored in the
attribute called STATUS for every record in the PRODUCT file.

LIST PRODUCT STATUS
@p....... Status

33523
35526
19502
39532
15496
25511
27014
11490
455941
41044
695417
25906
61965
63968
655971
41535

LML anNOnenP = = = Oho =

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 52

&

ACTIVANT

The product status in the raw form is different from what is displayed on the Product
Maintenance screen. In the raw form it is a numeric value. On the Product Maintenance
screen it is a word that describes the status. The following list shows the word that
corresponds to each numeric value.

1 = Stock 4 = Delete 7 = Purge
2 = Non-Stock 5 =Review 8 = Temp
3 = MiscChrg 6 = Comment 9 = Lotltem

This concept is as important for Mass Load as it is for Report Writer. Mass loading the
word “Stock” as a product status will cause program errors. Data must be stored in its
raw format. In this example, use the number 1, which represents “Stock” as the input
value when mass loading.

The most common question asked is how do you know the definition of the raw data?
Unless you know it, the only way to learn it is to test it. For example, change the status of
a product, then view it in the raw form in TCL or test the dictionary item. We will discuss
testing dictionary items in future lessons.

In the following example, a dictionary item has been created in the product file that is an
I-Descriptor called STAT.DESC. This dictionary item displays the alpha description for
the status.

The following command lists records in the PRODUCT file. For each record it shows the
record key, the raw data stored in the attribute called STATUS, and the alpha
representation of that status.

LIST PRODUCT STATUS STAT.DESC

@Ip....... Status Stat.Desc.
33523

35526 1 STOCK
19502 2 NONSTOCK
39532 5 REVIEW
15496 1 STOCK
29511 1 STOCK
27514 1 STOCK
11490 2 NONSTOCK

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 53

&

ACTIVANT

There is no limit to how many dictionary items you can list using the LIST command.
When the information won’t fit horizontally across the screen, it displays vertically.

The following example shows a vertical listing of the customer’s name, first contact, first
contact’s phone number, and customer type from the ENTITY file:

LIST ENTITY NAME CONTACT1 PHONE1l CUST.TYPE
Entity ID... 5080

Entity Name. FRED MAZZACCO

CONTACT1.... TELEPHONE

PHONEL. 401-861-2026

Entity ID... 25396

Entity Name. Gayl Skorenki

CONTACT1.... Gayl Skorenk

i
PHONEL. 217-309-9847
Type........ PH

Exercise 4.5

1. Using TCL, retrieve your saved list.

2. List the following information:

e Name
e State
e Ship Via

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 54

&

ACTIVANT
Sorting

There are two verbs used to sort a list of records:
e BY —sorts records in ascending order

e BY-DSND - sorts records in descending order
The dictionary item on which you want to base the sort must follow the sort verb.
Example 1
List the records in the PRODUCT file. Display the product description and price line.
Sort the products by price line and then sort the products within each price line by their
description.

;LIST PRODUCT DESC LINE BY LINE BY DESC

Example 2
List the records in the PRODUCT file. Display the product description, price line, and list
price. Sort the list by price, with the most expensive items at the top and least expensive

items at the bottom.

;LIST PRODUCT DESC LINE LIST BY-DSND LIST

Exercise 4.6

1. Using TCL, retrieve your saved list.
2. List your saved list, sorted in ascending order.

3. List your saved list, sorted in descending order.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 55

Setting Common Data

&

ACTIVANT

Some dictionary items prompt you to enter data, such as a branch number or date, for the
item to evaluate properly. In TCL, use the SET.COMMON command to enter data

required by dictionary items that have a prompt.

For example, in a multi-branch environment a product can have different on-hand
quantities in each branch. Each branch can also store its on-hand quantities in multiple
bin locations. Before you write a TCL command using the ON.HAND dictionary item,
you need to specify which branch and bin location the command applies to.

SET.COMMON

Enter the SET.COMMON command at the TCL prompt to display the following screen:

Common Data
Enter Br/Tr/Al1 :
Enter Start Date
Enter End/As of Date
Discount Class
Product Location
Price Basis MName
Location Number
Multi Yalue Pos
Enter Br
Generic Prompt :
Ignore Branch Hierarchy - N

Enter data for the fields related to the dictionary items you plan to use in following TCL
commands and press Esc. Any information you enter on this screen is utilized by future
TCL commands, until you exit from the TCL program or change the settings.

Release 8 UniVerse Data Structures with Report Writer and Mass Load

Page 56

&

ACTIVANT
Exercise 4.7

1. Using TCL, list products and display their on-hands without setting any common
data.

2. Using TCL, set common data by entering a branch and as-of-date.

3. List the products and their on-hands again.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 57

&

ACTIVANT
Activating Upper/Lower Case Sensitivity

Eclipse TCL is case-sensitive. The system is set up to convert the TCL statements you
enter to upper case, because TCL commands must be upper case and Eclipse file names
and dictionary items are stored in upper case.

When selecting records based on attribute data, however, you may want your TCL
statement to be case-sensitive. For example, a select statement that gathers all entities
with a name beginning with “Joe]” produces different results, depending on whether
Upper/Lower Case sensitivity is active.

UL Command

Use the UL command to activate Upper/Lower Case sensitivity. This remains active until
you exit the TCL screen.

Following are two examples. The first selection was performed without activating
Upper/Lower Case sensitivity. The command selected 14 records. The second selection
was executed after activating Upper/Lower Case sensitivity. This time the command
selected just 2 records.

:SELECT ENTITY WITH HAME = “Joel”
ecord(s) selected to SELECT list #0.

Active List Cleared
qul

== |Jpper/Lower Case Active ==
:SELECT ENTITY WITH NAME = "Joel”
(@ Decordls) selected to SELECT list #9.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 58

&

ACTIVANT

In the first example, only those entities whose name began with an upper case “JOE”
were selected.

In the second example, only those entities whose name began with an upper case “J” and
lower case ‘oe’ were selected.

Note: The select function in Report Writer / Mass Load respects Upper/Lower Case
sensitivity. This function will be discussed further in Lesson 6.

Exercise 4.8
1. Using TCL without Upper/Lower Case sensitivity activated, select products with the
word “White” in the description.

2. Using TCL with Upper/Lower Case sensitivity activated, select products with the
word “White” in the description.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 59

&

ACTIVANT

Lesson 5
Creating a Basic Report in Report Writer

Objectives

After you complete this lesson, you will be able to:

e Use the basic Report Writer/Mass Load screens
e Create a basic report using existing [-Descriptors and attributes

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 60

&

ACTIVANT
Report Writer

Report Writer enables you to extract information from the Eclipse database and create
customized reports. A report can be printed directly from Eclipse or downloaded to your
PC, where another application can access and use the data. The Report Writer program
can calculate subtotals and or perform other mathematical calculations on numeric data.
You can also use Report Writer to print mailing or bin labels.

There are three major steps in creating a report:

e Designing the Report Layout — First you design the report layout, including the
title, columns, headings and totals.

e Selecting the Report Data — After you have designed the report layout, you need
to specify the criteria to be used for selecting data for the report.

e Running the Report — After you have designed the report layout and selected the
data for the report, you need to process the data and create the report.

Designing Your Report

What do you want to use this report for? Use the answer to this question to determine the
information to include in the report and how to display it.

Then you need to determine which file the information will come from. For example, if

the report is a sales report, but you only want monthly and yearly sales, this information

can be obtained from the ENTITY file. If you need product information pertaining to the
sales, then the PSUB file is more appropriate.

Use the report writer view of the Report Writer/Mass Load Design screen to design a
report layout. From the Reports menu, select Report Writer to display this view.

In the header portion of the screen you assign an ID to the design, designate the file from
which the data for the report will be obtained, and enter the title to be printed at the top of
each report page.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 61

&

ACTIVANT

The Design ID is something that will be repurposed. This means that you can re-run the
report again and again. The ID should be something that references what the report is
about and should have a prefix of your initials so that you can always find the reports you
created quickly and easily.

File Name: The hardest part of creating a report writer report is making sure that you are
starting in the correct file. Use the spreadsheet provided to you in Lesson 2 to help you
pick the right file.

The Title can be more detailed description. Remember that this will appear on the report
itself when it is complete. Make the title user friendly so that when the end user looks at
their report, they understand what the report is all about.

Helpful Hint: It is best to clearly write down or obtain a specification sheet from the
requester of what they want to see on the report. Important questions to have answered
are how to select, sort and subtotal the report and of course, what do they need to see.
This will help you to determine what file you need to turn to and whether all of the
information is available from that file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 62

Painting Your Columns

&

ACTIVANT

Once you have determined the file and the fields of information you want to display on
your report, you need to paint your columns. The Report Writer/Mass Load program
enables you to paint your columns with more flexibility than TCL’s LIST command.
You have the option of changing your column headings as well as your width and output.

Report Writer/Mass Load Design

Design ID : SHIPYIA Created : B8/20/84 By : Nicole Dursi
File MName : ENTITY Total HWidth : 1086
Title : NJ Customer’s Ship Via Report
‘Col—Dict Item/Formula Hidth Column Heading BrktTotT—Format—
1 |VIEWER_ID 8 (Cus ID N | =
2 |NAME 35 |Customer Name N | =
3 |ZIP_CODE 10 |Zip Code N | =
4= |CONTACTS 20 |Contact N | =
o= |PHONE_NBRS 20 |Phonet N | =
6 |OUTSIDE_SALES 8 |Out Slsp N | =
7 of 7 =
Blel Build | Adv Selectlion | Ecl Dct | [Bol Data | Copli | llel | Edg | Analyfier
Bun Rpt|Dict S0m|Mabel |{pt |Jotes|Miew|Hegin Load|Set VEI|LoE|Files|Hath
Col:
The Col number represents each column on the report. In some case scenarios this
column will show an asterisk next to a number. This is a clear indication to you that the
data element chosen requires more information to be entered using the
Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 63

Dict Item/Formula:

&

ACTIVANT

In the Dict Item/Formula field, enter the dictionary item for the field you want to

displ

ay.

Use the F10 function here to view a list of the valid dictionary items available within the
file. You can also use the Dict Sum hot key to display the Dictionary Summary
Maintenance screen for the file.

It is possible to create a formula from the results of two columns on the report. Let’s say
you had a report on the product file that displayed the item’s on-hand quantity in column
3 and the item’s replacement cost in column 4. You can have column 5 be a calculation
of 3*4. This means multiply the results in column 3 by the results in column 4 and
display it in column 5.

Report Writer/Mass Load Design

Design ID : ND.PROD.VALUE Created : 07/28/084 By : Hicole Dursi

File Hame : PRODUCT Total Width : 80

Title : Special Product Evaluation Report
(ColT—™Dict Item/Formula Width Column Heading BrktTotT—Format—

1 |VIEWER.ID 10 |Part No N | =

2= |DESC 35 |Description N | =

3= |PREY . ONHAND 10 |On-Hand N |Y |MRO

&4 |REPCOST 9 |Rep—Cost N |Y |MR3

9 |3=4 12 |Ext Yalue N |Y |MR2

6 of 6 =

Bel Build | Adv Selectlion | [Ecl Dct | Mol Data | Copll | Mel | Edg " Analyfer

Bun Rpt|Dict SUm|Mabel |lpt|fotes|Miew|fegin Load|Set VEL [Lo|Hiles|Hath

Formulas can also be a bit more complicated than the simple math we did in the above
example. You can divide (/), add (+), subtract (-) and multiply (*) as well as a
combination.

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 64

&

ACTIVANT

In both previous examples, notice that the first column’s dictionary item is called
VIEWER _ID. Utilize the VIEWER ID in such files as ENTITY and PRODUCT. This
dictionary item converts the internal ID or “key” of the record, so that you can drill down
into the record from your Hold File or Spooler.

When you enter a dictionary ID, the system populates the remaining columns with
information such as width, column heading, and format from Dictionary Maintenance,
and standard defaults. You can change this information to reflect your desired output, as
discussed below.

Width

The Width is filled with the default defined for the dictionary item. You can change the
width larger or smaller. However you want the column to be wide enough to view all of
the information in the field.

Column Heading

The Column Heading comes from the Prompt defined for the dictionary item in
Dictionary Maintenance. This will appear as the column heading at the top of the report.
If necessary, change the heading to mixed case, so it has a better look and feel.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 65

&

ACTIVANT
Using the Files Option on Report Writer

The files option will provide you a list of other files you can link to from the file your
report writer began with.

An important rule to this hotkey is that you need to know the data that you want to pull
back and the “key” that is going to grant you this access for the data you are looking to
obtain.

The same rules that apply when creating an I-descriptor using the TRANS command
exists here. (We will be discussing the creation of TRANS command dictionaries in a
later lesson.)

If I want to pull back the Outside Salespersons full name from the INTITALS file when
running a report from the ENTITY file, it would be silly for me to use the Inside
Salesperson as the “key” to the INTITIALS file. I would want to use the Outside sales
person.

In the following example we have a report writer report that is being written off of the

PRODUCT file.
Report Writer/Mass Load Design
Design ID : ND.PROD.VALUE Created : 09/22/84 By : Nicole Dursi
File Hame : PRODUCT Total Width : 82
Title : Special Product Evaluation Report
‘Col—Dict Ttem/Formula Hidth Column Heading BrktTotT—Format——
1 (VIEWER_ID 7 |ID N | =
2= |DESC 35 [Product Description N | =
3= |PREV . ONHAND 10 |Onhand N |Y |MRO
4 |REPCOST 14 |Rep—Cost N |Y |HR3
9 |3=4 12 |Extended Cost N |Y |HR2

6 of 6 =
Bel Build | Adv Selectllon | [Ecl Dct | Mol Data | Copll | Mel dg " Anal vier
BHun Rpt|Dict Sim|Mabel |@pt|Hotes |Miew|BEegin Load|Set VEI [Lofl|Files|Jath

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 66

&

ACTIVANT

The Files option when accessed provides a list of files we can obtain information from.

Report Writer/Mass Load Design

Design ID : ND.PROD.VALUE Created : 07/28/84 By : Nicole Dursi
File Name : PRODUCT Total Width : 80
Title : Special Product Evaluation Report
[ColT™Dict Item/Formula Width Column Heading BrktTotT—Format—
1 (VIEWER.ID | 18 [Part No N T ® T__
2= |DESC Files links
3= |PREV|SALES .BUDGET . GRP - Sales Budget groups
&4 |REPC
5 |3=4 [PROCURE.GROUP - Procure Group
PRICE.LINE - Price Line
GENLED - G/L Account Data
PRODUCT .NOTES - Product Notes File
PROD . DVYNAM - Product Dynamic Data

Pg 1 of &

‘ 6 of 6 —
Bel Build | Adv Selectlion | Ecl Dct | Mol Data | Copll | Mel | Edg ” Analyler

Bun Rpt|Dict SHm|Mabel |Bpt |Hotes|Miew|Begin Load|Set VEL [Lo|Eiles|Bath

Once a file is selected the system will display the different dictionaries that will link you
to the file you chose. This is the crucial part of the entire process.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 67

&

ACTIVANT
In the figure below we can see that both BUY LINE and SECONDARY BLINE are

options to choose from. If we are interested in seeing information pertaining to the buy
line attached to the product we would choose buy-line. If however, we need to obtain
information relative to a secondary buy line that may or may not be attached to the
product, we would pick secondary buy line.

Report Hriter/Mass Load Design

Design ID : ND.PROD.VALUE Created : 07/28/04 By : HNicole Dursi

File Name : PRODUCT Total Width : 80

Title : Special Product Evaluation Report
‘Col—Dict Item/Formula Hidth Column Heading BrktTot Format—
1 |(VIEWER.ID ‘ 10 [Part No N | = T__

%* EEEE Select a dictionary to link PRODUCT to BUY.LINE———

4 |REPC|BUY_LINE — Buy Line

9 |3=4 |SECONDARY_BLINES - VM list of secondary buy-lines

Pg 1of 1
‘ 6 of 6 =

Bel Build | Adv Selectllon | Ecl Dct | Mol Data | Copll | Mel | HEdg " Analyller
Bun Rpt|Dict Slin|Mabel |pt|Motes|Miew|Begin Load|Set VEL|LoE|Eiles|Bath

Release 8

UniVerse Data Structures with Report Writer and Mass Load Page 68

&

ACTIVANT
Once the link has been selected we can search for dictionary items from the file we just
linked to.
Report Writer/Mass Load Design

Design ID : ND.PROD.VALUE Created : 07/28/04 By : Nicole Dursi

File Name : PRODUCT Total Width : 80

Title : Special Product Evaluation Report
‘ColT—™Dict Item/Formula Width Column Heading Brk+Tot Format—

1 |VIEWER.ID 10 |Part No N | =

2= (DESC 35 |Description N | =

3= | PREY . ONHAND 10 |0On-Hand N|Y [MRO

L |REPC

5 | 3=k

Dict Item to Search for in BUY.LINE: _
6 of 6 =

Bel Build | Adv Selectllon | Ecl Dct | Bol Data | Copll | Mel | Edg ” Analyler

Bun Rpt|Dict Slim|Mabel ([pt|Motes |Miew|Begin Load|Set VEL|LoE|Eiles|Bath

Any data element that exists in the file will become options. In this example here we will
select the procurement group that is assigned to buy line for the items appearing on the

report.
Report Writer/Mass Load Design
Design ID : HND.PROD.YALUE Created : 07/28/04 By : Nicole Dursi
File NHame : PRODUCT Total HWidth : 80
Title : Special Product Evaluation Report
‘Col—Dict Item/Formula Hidth Column Heading Brk-Tot Format—
1 (VIEWER.ID 108 (Part No N | =
2= |DESC 35 |Description N | =
3= |PREY. ONHAND 10 |[On-Hand N | Y |MRG
4 |REPC
5 |3=4 |] H
BUY.LINE Archived Dictionary Items
NET .HITS - Hetwork Hits
NONSTOCK - NONSTOCK
ORDER .CYCLE - ORDER.CYCLE
OVR.LT - QVR.LT
PROCURE . DAYS - PROCURE.DAYS
PROMISE .DAYS - PROMISE .DAYS
Bel Bu|SAFETY.FACTOR - SAFETY.FACTOR
—— | SUGGEST . ALL - Suggest on all
Bun Rpt|TAR.YALUE - TAR.VYALUE
Pa 3 of 4

After the dictionary is selected the system will display the dictionary differently from
others being used on the report. The system will insert an exclamation point (!) as a
prefix with the file name attached to it.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 69

&

ACTIVANT
A tilde (~) will appear after the file name which separates the file you linked to, to the

dictionary you are displaying on the report.

Report Writer/Mass Load Design

Design ID : ND.PROD.VYALUE Created : 07/28/84 By : Nicole Dursi

File Name : PRODUCT Total Width : 91

Title : Special Product Evaluation Report
(ColT—Dict Item/Formula Hidth Column Heading BrktTotT—Format—

1 (VIEWER.ID 10 (Part No N | =

2+ [DESC 35 |Description N | =

3= [PREY . ONHAND 18 |On-Hand N |Y |MRO

4 [(REPCOST 9 |Rep-Cost N |Y |MR3

9 [3=4 12 (Ext VYalue N |Y |MR2

6 ['BUY.LINE"PROCURE.GRP 10 (PROCURE GROU N | =

6 of 6 =

Hel Build | Adv Selectlion | [Ecl Dct | Mol Data | Copl] | Mel | Hdg " AnalyHer

Bun Rpt|Dict Slm|Mabel |[pt|Jotes |Miew|Hegin Load|Set VEL|Lo|Files|Hath

Advanced Search for Dictionaries in Other Files

The files option above is great if you know the file that you want to go to but you are
unclear as to the data elements from the file you want to display on your report. What if
you knew the dictionary item from another file? Is there a short cut to get to the
dictionary without using the Files option?

Using the forward slash (/) as a prefix to a dictionary item search, the system will be
smart enough to display all of the dictionary items you can utilize from the file you are
creating your report from.

In the following figure a report is created from the product file. Using the forward slash
we will search for all data elements that can be used in the product file regardless of the
file the dictionary item actually belongs. After we key in our search criteria we use the
<enter> key to begin the process.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 70

&

ACTIVANT
Report Writer/Mass Load Design
Design ID : ND.PROD.VALUE Created : B08/04/84 By : Nicole Dursi
File Name : PRODUCT Total Hidth : 98
Title : Sepcial Product Evaluation Report
(ColT—Dict Item/Formula Hidth Column Heading BrktTotT—Format—
1 (VIEYWER.ID 10 (Part No N | =
2= |DESC 35 |Description N | =
3= |PREV. ONHAND 10 (On-Hand N |Y |HRO
&4 |REPCOST 14 |Rep-Cost N |Y |HR3
5 [3=4 12 |Ext Yalue N |VY |HMR2
,J%—. INE"PROCURE_GROU| 12 |Procure Group N | =
(/desc
N—
7 of 1 =
Bel Build | Adv Selectlion | [Ecl Dct | Mol Data || Copll | Mel | [dg | Analyler
Bun Rpt|Dict Sim|Mabel |@pt|fotes |Miew|Eegin Load|Set VEI [Lof|Files|HBath

There are pages of options to choose from. The system will display the name of the
dictionary item it encountered as well as the file for which it belongs.

Dictionary Items

ACCOUNT_DESC - GEMLED
DESC_GL_ID - GENLED
INTERNAL_ACCT_DESC - GENLED
SHORT_ACCOUNT_DESC - GENLED
SUB_LEDGER_DESC - GENLED
DESCRIPTION - PRICE.LINE

Pa & of 6

Find the element you want to use and select it by positioning your cursor on the option
and hit your <enter> key.

Next the system will ask you for the appropriate path you want to use to get to the
dictionary item.

Select a file path

PRODUCT>ENTITY>PRICE.LINE
PRODUCT>TERRITORY>ENTITY>PRICE . LINE
PRODUCT>LEDGER>ENTITY>PRICE.LINE
PRODUCT>LEDGER>TERRITORY>ENTITY>PRICE .LINE
PRODUCT>LEDGER>PRICE-GRP>PRICE . LINE
PRUDUCT>LEDGER)PRICE—GRP)HHTRIH%ENTIIV)?RICE.LINE
q 0

As stipulated earlier, picking the path is the most important part of this process. Pay
careful attention to how you want to get to the file and what will be returned in the
column with the path you chose.

Lastly you will be prompted to choose the key that will give you access to the file. This
process is the same as using the files option from the report writer/mass load screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 71

&

ACTIVANT
Select a dictionary to link PRODUCT to PRICE.LINE
$PRICE_LINES$ - Price Line
LINE - LINE
PricelLine -
ND.LINE -

How does the System Know what Files you have Access to?

In the dictionary maintenance screen there is a hotkey called “Key”. This will provide
you the name of the file(s) the dictionary item will give you access to.

Eclipse Dictionary Maintenance View Only
File Name : PRODUCT
Dict ID : PRICE_LINE Version #
Dict Type : D Attr# : 9 Valk Subval# :
Description : Price Line
Prompt : PRpr=View Only= Key Files

PRICE.LINE

Justify (L/|_
Maximum Width egs:
Multi-Yalued (Y/
Sub-Yalued (Y/
Required (Y/
Allow Update (Y/ Hax Lines :
Case Mapping dexed (Y/N) : N
SFA Category
Format {Output) 2 of 1
Update Subroutine
Bopy | Delete | Valid | M-Desc | E¥pand | Brompt Log || Hdest Hccess(
Undo | Cl0se Prolram N—1

As we can see in the above figure the data element in the product file called price line is
the Key that will give you access to the Price Line file itself. It is possible that a single
data element can be the “key” to multiple files.

This one field in the dictionary maintenance screen is what drives the ability to use the
files option or the forward slash option in the report writer module.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 72

&

ACTIVANT
Path Option on Report Writer

The path option is available only if your cursor is positioned on a column that will be
using the linked files method. This hotkey displays the path that you took to extract
information from another file onto your report.

Report Hriter/Hass Load Design

Design ID : ND.PROD.VALUE Created : 07/28/04 By : Nicole Dursi

File Name : PRODUCT Total Width : 91

Title : Special Product Evaluation Report

File Path

‘ColT—0Dict Item|End File : BUY.LINE TotT—Format—

1 (VIEWER.ID |End Dict : PROCURE.GRP *

2= |DESC File Foreign Key =

3= |PREY.ONHAND | PRODUCT BUY_LINE Y (MRO

4 |REPCOST BUY.LINE Y (MR3

5 [3=4 ¥ [MR2

6 ['BUY.LINE"P *

1 of 2 = 6 of 6 =

Bel Build Adv Selectllon " Bcl Dct | Mol Data | Copl] ” Bel " MdgAJ,ﬂnglyEer

Bun Rpt|Dict SHm|Mabel |@pt|Hotes |Hiew|Begin Load|Set VEL |LoB|Hiled|Bath)

A new screen will appear on top of your report writer design displaying the end file and
end dictionary item you retrieved and below the file you started in and how you linked
into the ‘end file’.

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 73

&

ACTIVANT

Just because a file is listed it doesn’t mean that the desired data from the file is achieved.
Be careful by clearly outlining what it is you need to extract from another file.

To be clear lets take a look at an example of a report writer report from the Buy Line file.

Report Writer/Mass Load Design

Design ID : BUYLINE Created : B4/01/84 By : Nicole Dursi

File HMame : BUY.LINE Total Width : 81

Title : Buvline Info
‘Col—Dict Ttem/Formula——Hidthy Column Heading BrktTotT—Format——

1 |(@ID 10 (B Line N | =

2 |DESCRIPTION 30 |Description N | =

3 |YINITIALSNAME 30 (Buyer HName N | =

&4 |'PRODUCT GL_PRODUCT_TY 8 |GL_PRODUCT_TYPE N | = [L8

4 of & =

Bel Build | Adv Selectllon | Ecl Dct | Mol Data | Copll | Mel | [dg " Anal vier

Bun Rpt|Dict SUm|Mabel |lpt|Hotes|Miew|Begin Load|Set VEL|LoE|Eiles|Eath

In column 4 of the above figure, we are linking out to the product file to extract the

GL _PRODUCT TYP. The question that we need to ask ourselves is what are we using
to get to the Product file from buy line file? The buy line is easy to get to from the
product file because every product must have a buy line assigned to it. So, how are we
going in the reverse direction?

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 74

ACTIVANT

&

Buy lines can have a Non-stock Default Template product assigned. It is nota
requirement that a buy line has this, therefore some buy lines may have one and others

may

When the path option is shown for column 4, we can see that the system is using the @ID

not.

of the non-stock template as our key into the product file.

Report Writer/Mass Load Design

Design ID : BUYLINE Created : B4/01/04 By : Nicole Dursi

File Name : BUY.LINE Total Width : 81

Title : Buyline Info

File Path

‘ColTDict Item|End File : PRODUCT TotT—Format—

1 |@ID End Dict : GL_PRODUCT_TYPE =

2 |DESCRIPTION File Foreign Key =

3 |tINITIALS™H|BUY.LINE NS_TEMPLATE_PROD »

& | 'PRODUCT GL |PRODUCT = |L8

1 of 2 = 4L of 4 =

Bel Build | Adv Selectlon ” EBcl Dct | Mol Data | Copl " el " Hdg " Analyler

Bun Rpt|Dict Slm|Mabel |fpt|Hotes|Miew|Begin Load|Set YEL|LoE |Eiles|Bath

Does one single product provide you the data that you are looking for and keep in mind

that it is a non-stock? If you were looking to display information for the item attached to

the buy line that is a different story.

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 75

&

ACTIVANT
Exercise 5.1

1. From the Reports menu, select Report Writer.

2. Design a basic report using the Entity file. Set up your columns and your column
headings to display:

Customer’s Name
Customer’s Contact
Contact’s Phone number
Price Class the Customer belongs to
Customer’s Credit Limit
Customer’s Inside Salesman’s Full Name
i. Hint: use the files option to retrieve this data for your report.
e Customer’s Start Date (Created Date)

Make sure your columns are wide enough to view all of the information in the fields.

3. Once you’ve painted your columns, stop.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 76

&

ACTIVANT

Column Data

When your cursor is positioned on a dictionary item chosen for your report, the Column
Data hot key may be highlighted. This indicates that more specific input is required in
order for that dictionary item to produce accurate information on the report.

For example, the PHONES dictionary item forces the Column Data hot key to highlight.
Because this dictionary item is multi-valued, you are prompted to designate which value
to select for the report. From the Report Writer/Mass Load Design screen, you can use
the Eclipse Dict hot key to display the Eclipse Dictionary Maintenance screen and
confirm that the Multi-Valued field for this dictionary item is set to Y.

Eclipse Dictionary Maintenance——INMIIN——
File Hame : ENTITY

Dict ID : PHONE_NBRS Version # :
Dict Type D Attrd : _17 Val# : Subval# :
Description : Phone Numbers
Prompt : PHONE_HNBRS
Data Format
Justify (L/R) :L {) Date Year
LTI LN . {) Numeric Decim : Negs:

Hulti-Yalued (Y/N) Dy {) ¥/N Only

—Valued (Y/N) {) = Only
Require " N {) Time
Allow Update (¥/N) : ¥ {) Yord Yrap Disp Lines: Max Lines :
Case Mapping : {=) Eclipse Dictionary Indexed (Y/N) : N
SFA Category {) Archived

Format {Output)
Update Subroutine

Bopy | Delete | Yalid | M-Desc | EXpand | Brompt | Log | est | Access | Hey
Undo | Cl0se ProfEram

Use the Multi-Valued (Y/N/B) field to specify whether the information stored in this
attribute has multiple values or is it branch-specific.

e Y — Column data will prompt for a multi-valued position.
e N - Column data will not prompt for anything.
e B - Column data will prompt for a branch.

For example, a vendor or customer’s list of contacts and phones is multi-valued. When
you use the PHONES dictionary item in Report Writer/Mass Load, the column data
prompt will appear as “Multi Valued Pos.”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 77

&

ACTIVANT

In Lesson 3, you learned that information could be stored as a sub-value of a multi-value.
The customer’s credit parameter is a perfect example as we discussed earlier.

In other cases you may be prompted to enter a branch, territory or ALL as well as Ignore
Branch Hierarchy shown below:

Column Data

(‘ColT——Column Heading Prompt Data
o= |BUYER Enter Br/Tr/A11 _
Ignore Branch Hierarchy N

1of1l
Ffpand | Melete Data

Ignore Branch Hierarchy

This setting is a yes or no prompt. In Eclipse you can prioritize your territories so that
one territory value will override another territory value.

A territory is a group of branches used for authorization, vendor, product and customer
settings as well as reporting purposes. For example, a nationwide company can designate

geographical territories, such as east, mid-west, and west. A branch can belong to more
than one territory.

Territory Maintenance
ID : GLOBAL

Desc : Distribetomtragches
Entity Prior '
Product Prior

Br Branch Name

1 Branch 1
2 Branch 3
WIND Hindmere

i of 4 =
Becall | Melete | [Hind "

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 78

&

ACTIVANT

The territory maintenance screen is located on the Files menu under the Branches option.

The Entity and Product priority levels are used to determine which territory will take
precedence over another territory.

So the question becomes, when running a report do you want to see the value that is

posted on the product or entity for the branch or do you want to see the value that is being
USED for the branch?

The hierarchy for priority is:

Branch specific setting will override a territory setting.
Territories look to the priority level defined here for hierarchy.
The territory of “All” which is predefined in the system is used
when a territory or branch setting is not found.

Lastly, the system will use any default control parameter setting.

Responding to the common data prompts serves the same function as using the
SET.COMMON command in TCL.

Exercise 5.2

1. Using the report you designed in Exercise 5.1, set the Column Data for the dictionary

items that require more specific information.

2. Stop.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 79

&

ACTIVANT
Break and Total

How you break and total the report should line up with the way that you plan on sorting
the report.

When you flag a column to break, the system will provide to you a warning if the column
is not already defined in your sorting criteria.

Report Writer/Mass Load Design

Design ID : SHIPYIA Created : 08/20/04 By : Nicole Dursi
File Name : ENTITY Total Width : 106
Title : NJ Customer’s Ship Via Report
‘ColT—7Dict Item/Formula Hidth Column Heading BrktTotT—Format—
1 (VIEWER_ID 8 [Cus ID N | =
2 |NAME 35 |Customer Name N | =
3 |ZIP_CODE 10 |Zip Code Y| =
4= |CON
5= PHO

6 |0UT|Dictionary is not in the Sort Criteria. Continue (Y/N) : _

J of 6 =
Bel Build | Adv Selectllon | Ecl Dct | Mol Data | Copll | Mel | Edg | Analyler

Bun Rpt|Dict SHm|Mabel |lpt|Hotes|Miew|Begin Load|Set YEL|Lol|Eiles|Bath

In the above example we are sorting by Zip Code. However the zip code is not in our
sort criteria yet as we have not begun the process of selecting out our records. You can
still enter a Y in this column and continue. Simply remember that your first sort should
be using the dictionary item you are breaking your report on.

What would happen if the break was designated for column 2 (Name), but the
report was sorting on Zip Code?

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 80

Total Column

&

ACTIVANT

If this report had a dictionary item that was returning a dollar value or some sort of
numeric data, we could use the total column to total up the values and provide a total at
each break on the report.

Earlier in this lesson we saw an example of a report that was written from the product
file. In the report we discussed the ability to do math between to columns on the report.

Report Writer/Mass Load Design

Design ID : HD.PROD.YALUE Created : 07/28/04 By : Nicole Dursi

File Name : PRODUCT Total HWidth : 91

Title : Special Product Evaluation Report
‘Col—Dict Item/Formula Hidth Column Heading BrktTotT—Format—

1 (VIEWER.ID 10 (Part No N | =

2= |DESC 35 |Description N | =

3= |PREY. ONHAND 10 |(On-Hand N | Y |MRO

&4 |REPCOST 9 |Rep-Cost N | Y |MR3

5 [3=4 12 |Ext Yalue N | Y |MR2

6 ['BUY.LINE"PROCURE.GRP 10 (PROCURE GROU N | =

1 of 6 =

Bel Build | Adv Selectlion | [Ecl Dct | Mol Data | Copll | Mel | HEdg ” Analyfer

Bun Rpt|Dict S0m|Mabel |{pt |Jotes|Miew|Hegin Load|Set VEI|LoE|Files|Hath

Note the total column is displaying a “Y” for the on-hand column, the replacement cost
column as well as the column that will multiply the results of both.

If your goal was to obtain a calculated value such as a gross profit percentage or margin,
the total column would use a “C” to calculate as opposed to the “Y” for totaling.

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 81

Formatting Data

&

ACTIVANT

Use the Format column on the Report Writer/Mass Load Design screen to change the
output format of some dictionary items. You can format the following types of data:

e Date
e Time

e (Case characters

e Numeric

values

The following tables list the format conversion codes used by Report Writer/Mass Load.

Date Output

Code Data Output

D 10851 15 SEP 1997

D2- 10851 09-15-97

D4- 10851 09-15-1997

D2/ 10851 09/15/97

D4/ 10851 09/15/1997

DM 10851 9

DMA 10851 SEPTEMBER

DW 10851 1

DWA 10851 MONDAY

DY 10851 1997

DI 09/15/97 10851

Time OQutput

Code Data Output

MT 32400 9:00

MT 54000 15:00

MTH 3600 01:00AM

MTH 46800 01:00PM

MTS 54000 15:00:00

MTHS 54000 3:00:00PM
Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 82

&

Release 8

ACTIVANT

Character OQutput
Code Data Output
MCA #123ABC* ABC
MC/A #123ABC* #123%
MCN #123ABC* 123
MCT JOHN DOE John Doe
MCU John Doe JOHN DOE
MCL John Doe john doe
Numeric Output
Code Data Output
MRO 123456 123456
MR2 123456 1234.56
MR3 123456 123.456
MR23 123456 123.46
MR2, 123456 1,234.56
MR2,$ 123456 $1,234.56
MR2,$*12 123456 $*#%1,234.56
MR2E -123456 <1234.56>
MR2D 123456 1234.56DB
MR2C -123456 1234.56CR
MR2N -123456 1234.56
MR2M -123456 1234.56-
MR29 1234560000 1.23
MR29 1237891234 1.24

UniVerse Data Structures with Report Writer and Mass Load Page 83

&

ACTIVANT

Exercise 5.3

1. On the report you are building, fill in the format columns as follows:

2. Stop.

Force the customer’s name to appear in all Caps.

Force the credit limit for the customer to appear with a dollar sign and comma
if above 1000.00.

Force a format of your choice for the date when the customer was created.

Release 8

UniVerse Data Structures with Report Writer and Mass Load Page 84

&

ACTIVANT

Lesson 6
Selecting and Sorting Your Report

Objectives

After you complete this lesson, you will be able to:

Select records to be included in your report

Use the standard selection screen in Report Writer
Use the advanced selection screen in Report Writer
Sort your report data

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 85

&

ACTIVANT

Report Writer/Mass Load Selection Screen

The Report Writer/Mass Load Selection screen serves the same function as the SELECT
command in TCL. Use this screen to specify the criteria for selecting the records to be
included in the report. The structure of this screen removes most of the guesswork from
understanding and applying the rules.

To display this screen, use the Select Build hot key on the Report Writer/Mass Load
Design screen.

To specify selection criteria, you need to build a conditional statement. The format of this
statement is similar to the format of the SELECT command in TCL. The conditional
statement uses a combination of verbs, modifiers, conjunctions, dictionary item names,
and operators to select a subset of records from the file being used to generate the report.

- Report Writer/Mass Load Selection
File Name :ENTITY Sample : Count : §]

Select Humber : 1 Reselect (Y/N) : V¥
‘Conj7T—Dictionary Name—T0p Compare To
= |M/(= |"c"
AND |STATE = |["NJ"
AND |SHIP_VIA = |"[TRUCKI"

Blegin Sel|Edit Prompts|Helection Data|llelete Sel|Soril|Eddl $lct|Eath

Each condition is entered on a separate line. Each line is connected to the next with the
AND or OR conjunction.

e AND - The condition on the previous line and the condition on the given line
must both be true for a record to be selected.

e OR - Either the condition on the previous line or the condition on the given line
must be true for the record to be selected.

Eclipse populates the conjunction column for the first condition with three asterisks. This
corresponds to “WITH” in TCL.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 86

&

ACTIVANT

Each condition is expressed using one of the following operators. Press F10 in the Op
column to display the options:

Not Equal To
< Less Than
> Greater Than
<=Less Than or Equal To
>=Greater Than or Equal T
Pa 1of 1

The TCL command that corresponds to the selection shown on the previous page is as
follows:

SELECT ENTITY WITH V/C = “C” AND WITH STATE = “NJ” AND WITH
SHIP VIA = “[TRUCK]”

This command selects customers that have a ship via containing the word “truck” and
reside in the state of “N.J.” Both criteria need to be met for a customer to appear on the

report.

Exercise 6.1
1. For the report you are creating, select those customers who belong to Price Class “3.”

2. Stop.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 87

&

ACTIVANT
Compare To Column on the Select Screen

The Compare To column is used in conjunction with the dictionary item and operator to
narrow the number of records to appear on the report.

The information entered in the Compare To column can be:
e A dictionary item from the file used to create the report writer.
e A text string enclosed in quotation marks.
e A null (or blank) value.

e A user-defined prompt.

Comparing to a Dictionary Item

Use dictionary items to compare the data in one dictionary item to another. The
dictionary item represents field/attribute data or an I-Descriptor that provides data.

For example, to generate a list of customers whose Inside Salesperson and Outside
Salesperson are the same, enter the following information:

Report Writer/Mass Load Selection
File Hame :ENTITY Sample : Count : §]
Select Number : 1 Reselect (Y/N) : V¥
(Conj Dictionary Hame Op Compare To
<x= | OUTSTDE_SALES ‘: ‘INSIDE_SHLES

To produce a list of customers whose Inside Salesperson and Outside Salesperson are not
the same, use the # operator.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 88

&

ACTIVANT
Comparing to a Text String

A text string is specific information designated by you to compare to the dictionary name.
You can also use wild cards, as discussed earlier, in this format.

For example, to select customers assigned to a designated Inside Salesperson, enter the
following information:

Report Writer/Mass Load Selection

File Name :ENTITY Sample : Count :]
Select Number : 1 Reselect (¥/N) : VY
Conj Dictionary Name—0p Compare To

=xx | TNSTIDE_SALES __T= ‘"BERGERD"

This conditional statement selects records whose INSIDE _SALES attribute contains
“BERGERD.”

To list those customers whose Inside Salesperson is not “BERGERD,” use the # operator.

Comparing to a Null Value

Use the null value in the Compare To column to select records based on whether the
designated dictionary item contains data or does not contain data. A null value is
represented by two quotation marks.

For example, to select customers who have not been assigned an Inside Salesperson,
enter the following information:

Report Writer/Mass Load Selection

File Hame :ENTITY Sample : Count : 0
Select Humber : 1 Reselect (Y/N) : VY

== | TNSIDE_SALES

Conj Dictionary Hame ‘Up‘"" Compare To

This statement selects records whose INSIDE SALES attribute is empty.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 89

&

ACTIVANT

On the other hand, to select customers who have been assigned an Inside Salesperson, use
the # operator.

Comparing to a User-Defined Prompt

A user-defined prompt in the Compare To column enables the system to prompt you to
enter a Compare To value each time you run the report.

Set up a user-defined prompt by entering a text string between dollar signs, such as
$DATES, in the Compare To ficld. Each time you run the report, the system prompts
you to enter the requested data. Your selection criteria are dynamic; because the
information passed to the report can be different each time the report is generated.

In the following example, each time you run the report the system will prompt you for a

state.
Report Hriter/Mass Load Selection
File Name :ENTITY Sample : Count :)]
Select Number : 1 Reselect (Y/N) : VY
‘ConjT—Dictionary Name—0p Compare To
=xx | SHIP VIA = |"[TRUCK1"
AND |STATE = |$STATES

Begin Sel|Edit Prompts|Belection Data|lelete Sel|Sorl|Eddl Slct|Eath

A conditional statement can contain multiple prompts. The only rule is that the text string
for each prompt must be different.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 90

&

ACTIVANT

For example, to select all customer records that were created within a range of dates,
enter the following information:

Report Writer/Mass Load Selection

File Mame :ENTITY Sample : Count :]
Select Number : 1 Reselect (Y/N) : V¥
Conj Dictionary Name—0p Compare To

=xx (START_DATE >=|$SDATES

AND [START_DATE <= |$EDATES

$SDATES and SEDATES are the user-defined fields that will contain the values entered
at the prompt. If you used $SDATES for both prompts, the system would only prompt for
one date instead of a date range. When requiring different information for the same
dictionary item, it is important that the prompt be unique for each one.

Use the Selection Data hot key on the Report Writer/Mass Load Selection screen to enter
the data requested by the prompts.

Selection Data

Selection Prompt Data
$SDATES Start Date >= /Ff
$EDATE® Start Date <=
1of 2 =
Qulti | Melete Data

The text displayed in the Prompt column is comprised of the Prompt associated with the
dictionary item you are prompting for and the operator from the conditional statement.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 91

&

ACTIVANT
Eclipse Dictionary Maintenance
File Hame : ENTITY
Dict ID : START_DATE Version # :
’gégL;huuLﬁ,' 0 Attr# : _48 Val# Subval# :
scription : Start Date eate Date)
rompt : Start Date
Data Format
Justify (L/R) : R (=) Date VYear : &
Maximum Width :) {) Mumeric Decim : Negs:
Multi-VYalued (Y/N) . N {) Y/N Only
Sub-Yalued (Y/N) N {) "=" Only
Required (Y/N) | {) Time
Allow Update (Y/N) Y {) HWord Wrap Disp Lines: Max Lines :
Case Mapping : {=) Eclipse Dictionary Indexed {Y/N) : N
SFA Category {) Archived
Format (Qutput)
Update Subroutine
Bopy || Delete | Walid | IFDesc | EXpand | [Erompt | Log | Dest | Access | [ev
Undo | Cl0se Proffram

To change these default prompts, use the Edit Prompts hot key on the Report
Writer/Mass Load Selection screen. When first displayed, the screen shows the default
prompts. You can replace the defaults with your own text.

File Name :ENTITY
Select Number : 1

‘ConjT—Dictionary Name—T0p7

E X

AND

START_DATE
START_DATE

Report Writer/Mass Load Selection
Sample : C

ount :

]

Reselect (Y/N)

4

Compare To

Edit Prompts

Beginning Date
Ending Date

2 of 2

Begin Sel|Edit Prompts

Belection Data|Belete Sel|Sorll

Hddl Slct

Bath

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 92

&

ACTIVANT
Exercise 6.2

1. For the report you are creating, select those customers that have a ship via assigned
and an outside salesperson assigned.

2. Narrow your select further by selecting only those customers who have a credit limit
greater than one hundred dollars.

3. Stop.
Note: The ENTITY file contains both vendor and customer records. Use the V/C
dictionary ID to select records that are customers or vendors.

e V/C=“C” for customer records.
e V/C=“V” for vendor records.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 93

&

ACTIVANT
Sorting the Report

After records have been selected, you may want to sort them before running the report.
Y ou should sort your records to work in conjunction with the break points and totals
defined on the Report Writer/Mass Load Design screen.

Use the Sort hot key on the Report Writer/Mass Load Selection screen to designate the
sorting sequence.

In the following example the selected customer records will sort first by the outside
salesperson in ascending (alphabetical) order. Then the records in each salesperson’s
group will sort by the customer name in ascending (alphabetical) order.

Sort Sequence
Design ID :
Order
OUTSIDE_SALES A
NAME A
Hath F12-Abort

Enter the dictionary items to be used as sort criteria and designate the sort Order for each
as ascending or descending. The A represents the TCL “BY” option discussed earlier.
The D represents the TCL “BY-DSND” option discussed earlier.

Use the Path option to use dictionaries from other files while sorting.

Exercise 6.3

1. For the report you are creating, sort the selected records by Zip code and then
alphabetize the customer names within each Zip code.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 94

&

ACTIVANT

Report Writer Advanced Selection Screen

The Report Writer Selection screen, displayed using the Adv Selection hot key, serves
the same function as the SSELECT command in TCL. You can use this screen, just as
you used the Report Writer/Mass Load Selection screen, to specify the criteria for
selecting and sorting the records to be included in the report.

fldvanced Report Writer/Mass Load Selection Screen
File Hame :ENTITY Sample : Reselect (Y/N) : ¥

Count—
1. WITH START_DATE >= $SDATE$ AND WITH START_DATE <= $EDATE$ v

2. BY OUTSIDE_SALES BY NAME

Begin Select | Edit Prompts | Belection Data | Melete Selections | [Hath

Note: This screen is less structured than the Report Writer/Mass Load Selection screen.
You should have a good understanding of the TCL commands before using this screen.

Exercise 6.4

1. Create your report again, this time instead of using the Select screen to select the
report, use the Advance Select Screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 95

&

ACTIVANT
Report Driver: Running the Report

The Run option from the report writer/mass load screen will run send the report to either your
hold file or the printer depending on what you choose.

Report Driver

Design ID : PRODUCT.LINE Created : 04/01/04 By : Nicole Dursi
File Name : PRODUCT Total Width : 98

Title : Names of the Price Lines assigned

Sample

Multi Value Pos
Enter Br/Tr/All :
Enter End/As of Date :

1of 3

Brint | Hold | [pts | Molumn Data | Selection Data | Hotes

The options that appear on this screen will be determined by the select criteria/column data from
the report writer itself.

If a dictionary item on the column of your report requires additional information such as the
Branch/Territory or All and the information is NOT entered on the column data option from the
report writer screen itself, the system will prompt you to enter the information here.

If more than one dictionary prompts for the same information, the system will only prompt you
on this screen ONCE. This is important to understand if you want columns on the report to have
different information. The detail for each column should be entered under the column data on
the report writer.

If you forget, this screen comes with the column data option. This will bring you into the
column data screen displaying the columns that are requiring more information.

Column Data

‘ColT—Column Heading Prompt Data
2= Product Description |Multi Value Pos _
&= |0n-Hand Enter Br/Tr/All1

Enter End/As of Date

1 of 2

Efipand | Melete Data

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 96

&

ACTIVANT

The most important aspect to recognize is that the prompts on the Report Driver are not limited
to the column data prompts from the report writer itself. Any dictionary from your select screen
will also be included on the report driver.

The same rules will apply meaning that if more than one dictionary item requires the same
information, you will only be prompted once... An exception to this would be data ranges for

which you are prompting for a beginning and ending date. Please refer back to your selecting
data section of this workbook if you need more information.

Other options from the Report Driver screen such as the Sample prompt may be useful.

Report Driver
Design ID : PRODUCT.TEST Created : 09/02/04 By : HNicole Dursi
File Mame : PRODUCT Total Width : 73

Title : i
;éample : >
Multi Value Pos
Enter Br/Tr/All
Enter End/As of Date
Ignore Branch Hierarchy :

LINE =

1of 5

Brint | fold | [lpts | Molumn Data | Belection Data | [Jotes

You can access this prompt simply by using your arrow key to move up. Here you can enter a
numeric value of the number of records you want to sample. This allows you to determine if the
report is what you want it to be before running it for all of the records.

Another key component of this screen is the Selection Data which provides the ability to enter
multiple listings for a prompt from the select screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 97

&

ACTIVANT

For example: The above report driver has a prompt for a Price Line. This prompt was added to
the report selection screen. Using the Selection Data option the system will open a new screen
shown below where multiple price lines can be added using the “Multi” option.

Selection Data
Selection Prompt Data
$LINE® LINE = —

1of1 =

Bulti | Delete Data

The notes option is used to provide notes for the end user that may help them to better
understand the report or the use for the report. These notes are entered by the writer of the
report. Instructions on how to run the report are also useful notes.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 98

&

ACTIVANT

Lesson 7
Report Writer Options

Objectives

After you complete this lesson, you will understand:

e Understanding other options available from Report Writer
e Creating Mailing Labels using Report Writer

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 99

&

ACTIVANT
Report Writer Options Screen

The report writer options screen provides the ability to show the number of records that
appear on the report, create a column delimited file format, double space your report and
print the prompts entered on the Report Writer/Mass Load Selection screen that were
used to select the data for the report.

Report Writer/Mass Load Design

Design ID : SHIPVIA_ADVYAWCED Created : 08/20/84 By : Nicole Dursi
File Name : ENTITY Total Width : 112
Title : NJ Customer’s Ship VYia Report

‘Col—Dict Item/Formula

Hidth Column Heading BrktTotT—Format—
8 [Cus ID N T * T__

Report Writer Options Screen
Spaces Between Lines :

Print Prompts? (Y/N) :¥

Print Line Numbers?

—Download Options-

Column Delimiter

Record Delimiter :

Trim Blanks? (Y¥/N) :N

1 |VIEWER_ID

‘ 1 of 7 =
Bel Build | Adv Selectllon | Ecl Dct | Bol Data | Copll | Mel | [Edg " Analvller
Bun Rpt|Dict Slm|Mabel (@pt |Hotes|Miew |Begin Load|Set VB [Lol|Eiles|Bath

For those of us that wear glasses and at times feel that they cannot see the world, reading
a report can become tedious. For that reason the options screen allows you to provide
spaces between lines on your report. When the report runs to your hold file the rows
will appear double spaced if you enter a 1.

The print prompts option is a Yes or No response with the default set to a Yes. Any
data specified on the select criteria screen using the Selection option will appear in the
header of the report. This will help to see how the report was selecting at the time it ran.

The print line numbers prompt looks like it could be a yes or no question. However,
this is really asking for a numeric value. The number you enter at this prompt will dictate
how wide the column will be. Each record that appears on the report will be counted
sequentially to the end of the report. The column will automatically become the very first
column on your report.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 100

&

ACTIVANT

If you are planning to download the report so that you can open it up in Excel or some
other third party software you can specify what the delimiters will be and whether you
wish to trim out any blank (null) spaces that appear at the end of each string on the report.

Trimming the spaces makes the size of the report smaller and therefore quicker to
download to your pc. The columns can then be extracted in Excel by using the text to

columns option.

The column delimiter can be what ever character you specify. The pipe sign (|) works
well here because typically one would not see a pipe sign in the data.

An example of a report using the trim and delimiter function is shown below:

ID........ Product Description................ Onhand.... Buyer..........
Value.

~0PBPAS932 | EG-RWH-16-40 10YR PARTS % LABOR|}7|IGMORE

“0PePAR14611-1/4" K 1@° SCH 40 PYC PIPE}27)DAVIDB

“0PePAR14AT7I1-1/4" K 20° SCH 40 PYC PIPE}23}DAVIDB

“0PePOA141{1/2" ¥ 20° SCH 40 PYC PIPE}82|DAVIDB

~000000142{3/4" K 108" SCH 40 PYC PIPE|2{DAVIDB
~000Q0014313/4" X 20" SCH 40 PYC PIPE[16]DAVIDB
“0e0A0014511" ¥ 20" SCH 40 PVYC PIPE}86{DAVIDB

Exercise 7.1

1. Pull up the report you created and access the options screen.
2. Make your report double spaced and show the number of lines on the report.
3. Re-run your report and verify the results in your hold file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 101

&

ACTIVANT

Exercise 7.2

2. Create a simple report from the product file that will select out only stock keeping
items for the price line assigned to you by your instructor.

Use the options to trim the blanks with a column delimiter.

4. Run the report to your hold file and verify the results.

(98]

Creating Mailing Labels

Mailing labels are accomplished in Eclipse by using a special dictionary item and the
Label option on your report writer.

The dictionary item is simply NA which stands for Name and Address. This dictionary
item will position the name and the address in such a way you would see on a mailing
label or envelope.

We will discuss this dictionary in more detail later in this workbook.

The report writer report should be set up similar to the following:
Report Writer/Mass Load Design

Design ID : CUST.LABELS Created : 07/30/84 By : Nicole Dursi
File Hame : ENTITY Total Width : 39
Title : Customer Mailing Labels
‘Col—Dict Ttem/Formula——Hidthy Column Heading BrktTotT—Format——
1 |SPACE 1 [SPACE N | =
2 |NA 35 [NAME&ADDR N | =
3 |SPACE 1 [SPACE N | =

4 of & =
Bel Build | Adv Selectllon | Ecl Dct | Mol Data | Copll | Mel | [dg | Anal vier

Bun Rpt|Dict SUm|Mabel |lpt|Hotes|Miew|Begin Load|Set VEL|LoE|Eiles|Eath

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 102

&

ACTIVANT

Depending on the type of labels used and how many lines will be available for the label
will determine the number of added line spaces you will add.

The above example is assuming a label that will hold 6 lines of information. Because the
addresses in our training data will only be a maximum of 4 lines, we are padding the label
with two extra lines using the SPACE dictionary.

Once we have our columns painted, now we need to define the label layout.

Use the label option on the report writer screen to access.

Report Writer/Hass Load Design

Design ID : CUST.LABELS Created : 07/30/04 By : Nicole Dursi
File Hame : ENTITY Total Width : 39
Title : Customer Mailing Labels
(ColT—™Dict Item/Formula Hidth Column Heading BrktTotT—Format——
1 |SPACE 1 [SPACE N | =
2 |NA 35 |NAME&ADDR N | =
3 |SPACE 1 [SPACE N | =

4 of 4 =
Bel Build Hdge§glaggzon Ecl Dct | Mol Data | Copll | Mel | Hdg " Anal yier

Bun Rpt|Dict SM&ﬂLabel“@)t Uotes |Miew|Hegin Load|Set VEL [Lof|Files|Hath
——

Once activated the Report Writer Label Specifications screen will open.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 103

&

)) ACTIVANT
Report Writer/Hass Load Design
Design ID : CUST.LABELS Created : 07/30/04 By : Nicole Dursi
File Hame : ENTITY Total HWidth : 39
Title
Report Hriter Label Specifications
(ColT—™Dict —Format—

1 |SPACE Print Labels (¥/N)..................: N
2 |NA # of Labels Across The Page.........: 1
3 |SPACE # of Lines Per Label (Height).......: 5

H of Lines to Skip Between Labels...: 1

of Spaces to Indent {Left Margin).: 0

of Spaces Per Label (Width).......: 35

of Spaces to Skip Between Labels..: 0

Print Null Fields (¥/N).............: N

of Line Up Labels to Print........: B

of Copies to Print For Each Label.: 1

Print Label Headings (Y/N)..........: N

F12-Abort 4 of & =
Bel Build ; - , , ” Analyfer

Bun Rpt|Dict Sm|Babel |{pt |Hotes|Miew|Begin Load|Set VEI|LoB|Files|Bath

There is no rhyme or reason for the default information you see on this screen other than
the Print Labels yes or no. Eclipse assumes that when you are creating a report you are
creating it as a normal report and not labels, therefore the default is a No.

Take a look at the labels that you plan on printing the customer addresses on. It is
important to know the design of the label when filling in the specifications here.

Most often customer mailing labels are the avery labels that are 3 labels across the page
and 10 labels down the page.

Of Labels Across the Page - The number of labels that can be printed across the page.

Of Lines per Label (Height) - The maximum number of lines that can be used for
printing on a label.

Of Lines to Skip between Labels - The number of lines to skip between rows of
labels.

Of Spaces to Indent (Left Margin) - The number of character spaces to indent from
the left edge of the label before printing the text on the label.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 104

&

ACTIVANT

Of Spaces per Label (Width) - The maximum number of character spaces that can be
used for printing a line of text on a label.

Of Spaces to Skip between Labels - The number of character spaces to skip between
labels across the page.

Report Writer/Mass Load Design

Design ID : CUST.LABELS Created : 07/30/04 By : Nicole Dursi
File Name : ENTITY Total Width : 39
Title
Report Writer Label Specifications
‘Col—Dict —Format—
1 [SPACE Print Labels (Y/N)..................: N
2 |NA # of Labels Across The Page.........: 3
3 |SPACE # of Lines Per Label (Height).......: 6
of Lines to Skip Between Labels...: 1
of Spaces to Indent (Left Marginl).: 3
of Spaces Per Label (Width).......: 32
of Spaces to Skip Between Labels..: 1
Print Null Fields (¥/N).............: ¥
of Line Up Labels to Print........: @
of Copies to Print For Each Label.: 1
Print Label Headings (Y/N)..........: N
F12-Abort 4L of & =
Bel Build ! . - . | Anal yler
Bun Rpt|Dict Slim|Mabel |Bpt |Motes|Miew|Begin Load|Set VEL [LoB|Eiles|Bath

If you need to test a sample of records you can either use the sample option when running
the report or you can indicate the number of labels to print in your testing. You are
looking to make sure that the labels will not creep up when the second and third page of
labels are printed out.

If you need more than one copy of your labels to print, you can change the # of copies
option from a 1 to the desired number.

The very last option of printing the label headings is not currently doing anything.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 105

ACTIVANT

&

Once you have the Label Specifications filled in and have tested them you may want to
copy this information into the Notes option of the report writer. This way if someone
changes a value, you will know what your settings were.

This is not a requirement, just a useful tip.

Report Writer/Mass Load Design

Design ID : CUST.LABELS : /30/04 By : Nicole Dursi
File Name : ENTITY To Width :
Title Notes for CUST.LABELS
Print Labelm={¥/N)............. — N
‘ColTDict It|# of Labels Across €.o.... 3 tT—Format—
1 |SPACE # of Lines Per Label (Helght].......: 6
2 |NA # of Lines to Skip Between Labels. 1
3 |SPACE # of Spaces to Indent (Left Margin).: 3
of Spaces Per Label (Width).......: 32
of Spaces to Skip Between Labels. 1
Print Null Fields (Y¥/).............: Y
of Line Up Labels to Print........: 8
of Copies to Print For Each Label. 1
Print Label Headings (Y/N)..........: N
L of & =
Bel Build , - —g " Analyller
Bun Rpt|Dict Slin|Mabel |pt|Motes|Miew|Begin Load|Set VEL|Lol|Eiles|Bath

Exercise 7.3

1. Create a report writer for custom labels. Use your initials as the prefix to your
design id.

2. Select out customers only that have a customer type of NE.NORM.

3. Fill in your desired label specifications and test by sending the report to your hold

Note: Use the sample option on the Run Driver Screen by positioning your cursor on the
prompt and entering the number of records you wish to use in your test, or specify your

file.

test input on the label specification screen as discussed.

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 106

&

ACTIVANT

Lesson 8
Creating a Mass Load

Objectives

After you complete this lesson, you will understand:

e What can be mass loaded in Eclipse
e How to use the Default/Set Value column

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 107

&

ACTIVANT
Mass Load

Mass Load enables you to update information in the Eclipse database. It is commonly
used to enter information, such as credit parameters for customers or inventory control
parameters for products.

The Mass Load program lists the records and fields to be updated on the Mass Load
Update screen. You can manually update these fields one record at a time or, if each
record is being updated with the same information, you can let the system update all the
records at once.

There are three major steps in creating a mass load:

e Designing the Mass Load — First you design the Mass Load Update screen
layout, including the file and fields to be updated.

e Selecting the Mass Load Data — After you have designed the mass load screen
layout, you need to specify the criteria for selecting the records to be updated.

¢ Running the Mass Load — After you have designed the mass load screen layout
and selected the records to be updated, you need to perform the updates.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 108

&

ACTIVANT
Rules for Mass Loading

The following two rules apply to mass loading:

¢ You cannot mass load information into an [-Descriptor. You can only mass load
into D-type dictionary items, which represent actual fields in a record.

e You cannot mass load information into a dynamic file.

Examples of dynamic files that cannot be mass loaded are:

e PROD.DYNAM e PSUB
e LEDGER e PHYS
e ORDER.QUEUE e AR

Examples of static files that can be mass loaded are:

e ENTITY e BUY.LINE
e PRODUCT e INITIALS
e PRICE.LINE o ZIP

The most common files where mass loading occurs are the ENTITY and PRODUCT
files.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 109

&

ACTIVANT

Designing the Mass Load

Use the mass load view of the Report Writer/Mass Load Design screen for designing the
layout of the Mass Load Update screen. From the Files menu, select Mass Load/Update
to display this view.

Report Writer/Mass Load Design

Design ID : SHIPVYIA Created : 08/20/84 By : Nicole Dursi
File Hame : ENTITY Total Width : 116
Title : NJ Customer’'s Ship Via Report
ColT—Dict Ttem/Formula—THidthTTypT———Defaul t/Set Value
1 (VIEWER_ID 8 | D=
2 |NAME 35 (0D
3 |ZIP_CODE 18 | D
4= |CONTACTS 20 | D
5+ |PHONE_NBRS 20 | D
6 |OUTSIDE_SALES 81D
7 |START_DATE 5 | D
8 |STATE B|D

8 of 8 =
Bel Build | Adv Selectllon | Ecl Dct | Mol Data | Copll | Mel | [dg " Anal vier

Bun Rpt|Dict Sim|Mabel |@pt|fotes |Miew|Eegin Load|Set VEI [Lof|Files|Bath

In the header portion of the screen, assign an ID to the design and designate the file that
contains the records to be updated.

In the body of the screen, you must describe each column you want to display on the
Mass Load Update screen. Some columns just display information that identifies the
record and other columns identify the fields to be updated. Sequential numbers identify
the columns on the screen, with 1 being the leftmost column, 2 being the next column to
the right, and so forth.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 110

&

ACTIVANT

For each column of the display you must:
e Identify the dictionary item (or formula) to be displayed in the column.
e Specify the width of the column.
The system populates this field with the width defined for the dictionary item.
You cannot change the width of a dictionary item you plan to update. If you
change the width, the field becomes display-only.

e Indicate whether the data in the column is for display only or to be updated.

e If the data is to be updated, specify how and with what value.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 111

&

ACTIVANT

Identifying the Data Type

The value you enter in the Typ field indicates whether the data in that column is display-
only or can be updated.

Data Type Data in this mass load column...

D (Display) is display-only and cannot be changed. The system displays an asterisk (*) following
a D when the field is a dictionary item that does not allow updates. Note: Any time
the width of a column on the mass load is changed an asterisk will appear and will
deem the data element display only.

U (Update) can be manually updated.

o If the Default/Set Value field on this screen is left blank, you can manually enter
the data for each record on the Mass Load Update screen.

o If the Default/Set Values field on this screen contains a value, you can enter this
same value for each record, one at a time, on the Mass Load Update screen as
you scroll through the records using the Enter key.

S (Set) will be updated by the system according to the data entered in the corresponding
Default/Set Value column.

Caution: Do not use this Typ code until you are sure that you are updating the
correct field with the correct data.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 112

&

ACTIVANT

Setting a Replacement Value

When the Typ code for a column of data is S or U, the data entered in the Default/Set
Value field determines what will be placed in that field.

Value Function

@ A set of quotes with nothing between them replaces the current value in the
designated field with a null value.

“» A space enclosed in quotes replaces the current value in the designated field with a
space.

“text” Text enclosed in quotes replaces the current value in the designated field with the
actual text.

Dict ID A dictionary ID replaces the current value in the designated field with the value
currently stored in that dictionary ID.

3+2 A number or numerical expression replaces a value in a designated numerical field

with the value of that number or expression.

A colon can be used to concatenate two values. This means you are combining
data together to create new data. For example, Dict ID:“TEST”

| A separator indicates the data will be added and should be word wrapped to the
length specified for that field in the mass load.

“value”="new-value” This is a Find and Replace method of mass loading. The mass load routine will
find the string of characters entered in the first text string and replace it with the
value entered in the second text string.

%AM%, % VM %, Allow you to specify new line characters or record delimiters in your data.
%SVM%
blank If the Typ code is “U” and you leave this field blank, you can manually update

this field for each record on the Mass Load Update screen. If the Typ code is “S”,
do not leave this field blank.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 113

&

ACTIVANT
Leaving the Default/Set Value Field Blank

If you enter U in the Typ field and leave the Default/Set Value field blank, you can
manually update this field for each record on the Mass Load Update screen.

Réport Writer/Mass Load Désign

Design ID : SHIPVIA Created : B88/20/84 By : Nicole Dursi
File Hame : ENTITY Total Width : 73
Title : NJ Customer’'s Ship VYia Report
ColT—Dict Item/Formula—TWidthTTyp Defaul t/Set Value
1 (VIEWER_ID 8 | D=
2 [NAME 35 (D
3 (ZIP_CODE 10 b
4 [OUTSIDE_SALES 8< U |-
5 [START_DATE 0O
6 [STATE 21| D

L of 6 =
Bel Build | Adv Selectllon | [Ecl Dct | [Bol Data | Copll | Mel | [Hdg " Analyfer
Bun Rpt|Dict Sm|Mabel |[pt|Jotes |Miew|Hegin Load|Set VEL|Lo|Files|Hath

Exercise 8.1

1. Create a mass load, using the select criteria assigned by the instructor, to manually
update the first contact name assigned to each customer record.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 114

&

ACTIVANT

Replacing a Value with a Text String

If you enter U in the Typ field and text enclosed in quotation marks in the Default/Set
Value field, you can replace the current value with that text.

For example, when one salesperson replaces another, select all the records assigned to the
original salesperson and display the SALEMAN dictionary item for each record in update
mode. Enter the new salesperson’s ID, enclosed in quotation marks, in the Default/Set
Value field. When you process each record, the system will overwrite the original value
with the new value.

Report Writer/Mass Load Design

Design ID : AOD.SMITH Created : 08/20/84 By : Nicole Dursi
File Hame : PRODUCT Total Width : 43
Title : Description Fix
[ColT—™Dict Item/Formula—TWidthTTypT——Default/Set VYalue
1 (VIEWER_ID 7 | D=
2= EESC 35 | U |"AOSKMITH"="A0 SMITH"

3 of 3 =
Bel Build | Adv Selectlion | [Ecl Dct | Mol Data | Copll | Mel | Edg " Analyfer

Bun Rpt|Dict $0m|Mabel |lpt|Jotes|Miew|Hegin Load|Set VAL [LoB|FHiles|Hath

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 115

&

ACTIVANT

You can also search for and replace part of a field with a text string.

In the following example the vendor name ‘AO SMITH’ was loaded as ‘AOSMITH’ in
the Description field and a space is needed to separate the two words.

Report Writer/Mass Load Design

Design ID : AOD.SMITH Created : 08/20/84 By : Hicole Dursi
File Name : PRODUCT Total Width : 43
Title : Description Fix
‘Col—Dict Item/Formula—TWidthTTypT——Default/Set VYalue
1 (VIEWER_ID 7 | D=
2 aESC 35 | U |"AOSKHITH"="A0 SMITH"

3 of 3 =
Bel Build | Adv Selectllon | Ecl Dct | [Bol Data | Copll | Mel | HEdg " Anal yHer
Bun Rpt|Dict SUm|Mabel |lpt|Jotes|Miew|fegin Load|Set VEL [LoB|Files|Hath

The first value in quotes represents the string of data you want to search for. The equal
sign is a replacement operator, indicating that the first value should be replaced by the
text within the following set of quotation marks.

As you step through the records listed on the Mass Load Update screen, the space is
inserted between the two words, as shown below:

Mass Load Update
File Mame:PRODUCT Design ID:A0.SMITH Hecall [Expand
'TEWER . TDESCRIPTION Desqription

022945 |PGD-50 AQ0 SHITH 50-GAL RG 15T/16P W|PGDHB A0 SHMITH FP-GAL RG 15T/16P W
022953 |PGD-75 A0 SHITH 75-GAL RG 15T/16P W |PGD4?S A0 SMITH #H-GAL RG 15T/16P W
022956 |PGC-30 A0 SMITH 36-GAL RG 10T/10P*Y |PGC-PO A0 SMITH
022957 |PGC-40 A0 SHITH 46-GAL RG 18T/16P W|PGCH0 A0 SMITH
022958 |PGC-50 AOSMITH 50-GAL RG 10T/18P WA |PGCHO AOSHMITH 5
022960 |[FGC-30 AQOSMITH 30-GAL RG 8T/8P*WAT |FGC-PO AOSHITH 3

A22QAQICCr_iA ONCMTTH La_cal P QT/eD Lo lcer

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 116

&

ACTIVANT
Exercise 8.2

1. Using select criteria assigned by your instructor, create a mass load that will assign a
designated ship via to a group of customers.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 117

Setting a Value to Null

&

ACTIVANT

A set of quotes with nothing between them replaces the current value in the designated
field with a null value. This erases any information that previously existed in the field.
Be very careful when using this option.

For example, your purchasing department has assigned new procurement groups to all the
buy lines and now you want to remove all the procurement groups assigned at the product

level.
Report Writer/Hass Load Design

Design ID : PROC_GROUP Created : 08/20/04 By : Nicole Dursi

File Name : PRODUCT Total Width : 3@

Title : Procure Group Fix
ColT—Dict Item/Formula—TWidthTTyp Defaul t/Set Value

1 (VIEWER_ID T | D=

2 |BUY_LINE 810D

3 |PROCURE_GROUP 13 (U

4 of & =

Bel Build | Adv Selectllon | Ecl Dct | [Bol Data | Copll | Mel | HEdg ” Analyfer

Bun Rpt|Dict Sm|Mabel |{pt |Jotes|Miew|Hegin Load|Set VEI|Lo|Files|Hath

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 118

&

ACTIVANT

Replacing a Value with another Dictionary ID Value

To replace the value in one dictionary item with the value from another dictionary item,
enter a dictionary ID in the Default/Set Value field.

For example, if your company adds a new branch, you need to update the PRODUCT file
to include sell group assignments for the new branch. The following mass load copies the
branch 1 sell group assignment (SELL_GRP,1) to the new branch (SELL_GRP).

Note that SELL_GRP is a multi-valued dictionary item. It contains the sell group
assignments for all the branches. The asterisk next to the column number indicates that
you must enter column data to specify which multi-value (branch) you are updating.

SELL GRP,I : using the comma and branch number after the dictionary item will
pinpoint the data in the branch specified to be copied into the new branch loaded in the
column data.

Design ID : PRODUCT Created : 08/20/98 By : Steven A. Grundt
File Mame : PRODUCT Total Width : 56
Title : MAINTAIN SELL GROUPS AMD DESC’S
ColT—Dict Item/Formula—WidthtTypT———Defaul t/Set Yalue
1 (VIEWER_ID 1 | D=
2= |DESC 35 | D
3= [SELL_GROUP 12 | U |SELL_GROUP,1

Report Hriter/Mass Load Design

b of & —
Bel Build | Adv Selectlion | [Ecl Dct | [Bol Data | Copll | Mel | Hdg ” Analyfer

Bun Rpt

Dict Slm|Mabel |pt|Hotes|Miew|Eeain Load|Set VYEL|LoE|Files|Eath

Release 8

UniVerse Data Structures with Report Writer and Mass Load Page 119

&

ACTIVANT
Replacing a Value with a Text String

You can replace a text string with new information.

In the following example, you can use the mass load program to replace the abbreviation
“Ave” with the word “Avenue” in the ADDRESS dictionary item.

Report Writer/Mass Load Design

Design ID : MASSLOAD.EXAMPLE Created : 08/20/04 By : Nicole Dursi
File MName : ENTITY Total Width : 92
Title : Example Mass Load
lColT—Dict Item/Formula——THidthtTyp Defaul t/Set Yalue
1 |VIEYMER_ID 8 | D=
2 |MAHE 35| D
3= |ADDRESS 35 | U ["AVE"="AVENUE™
& |CREDIT_LIMIT 11 | D

9 of 5 =
Bel Build | Adv Selectllon | Ecl Dct | Mol Data | Copll | Mel | HEdg “ AnalyHer
Bun Rpt|Dict Slm|Mabel |@pt |Jotes [Miew|Begin Load|Set VEI|LoE|Files |Hath

Warning: Be careful when running a mass load of this nature. Think clearly what would
occur if this load was run 2 times or 3 times?

Exercise 8.3

1. Using the selection criteria assigned by the instructor, create a mass load that will
change the address to display “Street” instead of the abbreviation “St”.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 120

&

ACTIVANT
Replacing a Value with a Concatenated Value
Use a colon to concatenate two values in the Default/Set Value field.

Consider the following problem: You are trying to update your prices using the auto price
update program, but your products do not have a UPC number for you to match to a
diskette. So, you are forced to use the model number of the product to update your prices.
Because another price line might use the same model number, you need to make the
model number unique to the line you want to update. You can do this by concatenating a
unique prefix to the model number and then storing this new ID in a user-defined field.

In the following example, the mass load concatenates the text string “AOS” to an
I-Descriptor dictionary item that extracts the first word of the product description. This
information is placed in a position of the multi-valued PU.IDS (Price Updating ID
Maintenance) dictionary item, based on what you enter for the column data prompt.

Report Writer/Mass Load Design

Design ID : PRODUCT Created : 08/20/98 By : Steven A. Grundt
File Name : PRODUCT Total Width : 77
Title : MAINTAIN SELL GROUPS AND DESC’S
‘Col—Dict Item/Formula—TWidthtTypT——Defaul t/Set Value
1 (VIEWER_ID 1 | D=
2= |DESC 35 (D
3= |SELL_GROUP 12 | D
4= |PU_IDS 20 [U |"A0S-":DESC.1STHD

50f 5 =
Bel Build | Adv Selectllon | Ecl Dct | Bol Data | Copl | Bel | Hdg " Anal yier
Bun Rpt|Dict SHm|Mabel |Mpt |Jotes|Miew|Begin Load|Set VEI|LoE|Files |Hath

Exercise 8.4

1. Using the selection criteria designated by your instructor, create a mass load to update
the Commodity Code field in the PRODUCT file with the sell group in branch 1
concatenated to your initials.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 121

&

ACTIVANT

Replacing a Value with a Numerical Expression

You can replace a numerical value with another number or a value calculated by a
numerical expression.

You can use the mass load in the following example to increase the credit limit of each
selected record by 2 percent.

Report Hriter/Mass Load Design

Design ID : MASSLOAD.EXAMPLE Created : 08/20/04 By : Nicole Dursi
File Name : ENTITY Total Width : 92
Title : Example Mass Load
‘ColT—Dict Item/Formula—TWidthtTypT———Defaul t/Set VYalue
1 (VIEWER_ID 8 | D=
2 |NAME 35| D
3= |ADDRESS 3> | D
4 |CREDIT_LIMIT 11 | U |CREDIT_LIMIT="1.82"

5> of 5 =
Bel Build Adv Selectllon | Ecl Dct | [Bol Data | Copl || Mel | Hdg " Analyfer

Hun Rpt|Dict Sim|Mabel ||lpt|fotes|Miew|Begin Load|Set VEI Lo |Hiles|Bath

Exercise 8.5

1. Using the selection criteria assigned by your instructor, increase the credit limit for
each customer by 4%.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 122

&

ACTIVANT
Word Wrapping

The pipe sign (|) at the end of the Default / Set Value causes the data to word wrap if the
updated information is longer than the character width of the dictionary item or field
being updated.

For example, the description of products in the PRODUCT file may not contain
information that is required. The mass load in the following example appends the word
“HONEYWELL” to the DESC dictionary item The column data for DESC, the
dictionary item being updated, is set to the first multi-valued position, because that is the
line of the description that is being updated.

Report Writer/Mass Load Design

Design ID : PROD.DESC Created : 08/20/84 By : Hicole Dursi
File Name : PRODUCT Total Width : 43
Title : Product Description Fix
‘Col—™Dict Ttem/Formula—WidthTTypT——Defaul t/Set Yalue
1 (VIEWER_ID 7 | D=
2= |DESC 35 | U |"HONEYWELL " :DESC|

3 of 3 =
Bel Build | Adv Selectlion | [Ecl Dct | Mol Data | Copll | Mel | Edg ” Analyfer

Bun Rpt|Dict SUm|Mabel |lpt|Jotes|Miew|fegin Load|Set VAL [Lo|Hiles|Eath

The pipe sign at the end of the string ensures that you can insert information as the first
word of the description without losing any of the description if it exceeds 35 characters. It
tells the program to word wrap to the next line if there is not enough space.

Exercise 8.6

1. Using the select criteria assigned by your instructor, append your First Name to the
description of your products. Make sure that the description will word wrap

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 123

&

ACTIVANT

Lesson 9
Dictionary Maintenance and I-Descriptors

Objectives

After you complete this lesson, you will be able to:

Understand the Dictionary Maintenance Screen
Understand how to create [-Descriptors

Use the elements in an [-Descriptor formula
Test the I-Descriptors you create

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 124

&

ACTIVANT

Dictionary Maintenance

Before we can create Interpretive Descriptor elements first we must understand all of the
elements that make up the Dictionary Maintenance Screen.

Eclipse Dictionary Maintenance

File Hame
Dict ID : Version # :
Dict Type : Attr# Vali : Subval# :
Description :
Prompt

Data Format
Justify (L/R) {) Date Year
Maximum Width {) Numeric Decim : Negs:
Multi-VYalued (¥/N) : {) Y/N Only
Sub-Yalued (Y/N) : {) '=" Only
Required (Y/N) : {) Time
Allow Update (Y/N) {) Word Hrap Disp Lines: Hax Lines :
Case Mapping : {) Eclipse Dictionary Indexed (Y/N) :
SFA Category {) Archived

Format {Output)
Update Subroutine

Copy | Delete | Valid | I-Desc | EKpand | Prompt Log | Test | Access | Key
Undo | Cl0Ose ProGram

The dictionaries are stored in the file called EDICT which stands for Eclipse Dictionary.

The following tables outline all of the different options available in the dictionary
maintenance screen.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 125

&

ACTIVANT

Dictionary Field Definitions

The following table describes the fields in the middle portion of the dictionary
maintenance screen.

Field Description

Dict Type

Character representing the dictionary item type.
e D (Data Element) — Identifies a physical field of data, such as a name, user
ID, number, address, description, or quantity.

e | (I-Descriptor) — Identifies a symbolic field the system can use for calculating
values.

Attri#

Attribute number, which indicates the numerical position of the field within the record
for the dictionary ID.

This field applies to Data element type dictionaries only.

Use the Dictionary Maintenance Summary screen to view the defined dictionary items
and corresponding attribute numbers for a file.

Val#

Numerical position of a value in a multi-valued field. For example, in a customer file
with six contacts, the third contact would be identified as value 3.

Subval#

Numerical position of a sub-value in a multi-valued field. For example, in a customer
file with six contacts, each of which contains a contact name and a phone number, the
phone number of the third contact person would be sub-value 2 of value 3.

Description

Description of the dictionary item.

Prompt

Default column heading for the selected data when printed on a report, and the prompt
if used in a Report Writer/Mass Load select statement with a variable value.

The system populates this field with the Dict ID, but you can enter your own heading or
prompt in this field.

Release 8

UniVerse Data Structures with Report Writer and Mass Load Page 126

&

ACTIVANT

Field Description

Justify (L/R)

Indicate whether this data item should align on the right or left side of the report
column.

Typically, text is left justified and numbers are right justified. Dates should be right
justified.

Maximum Width

Enter the default maximum character width for the value.

Multi-Valued (Y/N)

Indicate whether this dictionary item can accommodate more than one entry.

For example, in the entity file the ADDRESS dictionary item is multi-valued,
allowing two lines of street address.

Note: If a dictionary item identifies a single value or sub-value of a multi-valued
field, set this field to N.

Sub-Valued (Y/N)

Indicate whether this dictionary item contains sub-values within a multi-valued field.

For example, a record in the customer file can have six contacts, which are multi-
values. Each contact has a name and phone number, which are sub-values.

Required (Y/N)

Indicate whether an entry for this dictionary item is mandatory when creating a
record in the file.

Allow Update (Y/N)

Indicate whether this dictionary item can be updated using mass load or user-
defined screens.

Case Mapping

Indicate whether the data stored in this field is set to Upper Case, Lower Case,
Title Case (initial uppercase), or Alpha Only (all alpha characters are uppercase).
Press F10 to select an option.

Changing the case mapping has a from-this-point-forward effect; the system does
not change existing data.

SFA Category If the displayed dictionary item will be used in the Sales Force Automation
application, press F10 and select an SFA category with which to associate this
item.

Format (Output) When needed, enter a standard Pick output conversion code that determines the

report display format for the data stored in this field. The codes can be found in
Lesson 5 of this document. They can be utilized in the format column when you
create a report writer report without the need of entering it here on the dictionary.

Update Subroutine

Identify a subroutine to be used to process the data entered from a screen or mass
load to update the field.

Date / Year

If this is a date field, enter an asterisk (*). Define the format of the year by entering
the number of digits to be displayed. The number of digits can be 0, 2, or 4.

Ensure that the Maximum Width is set to allow for the separators, a two-digit
month, a two-digit day, and the selected number of digits for the year. If the
Maximum Width is not large enough, the date wraps to the next line.

Numeric / Decim / Negs

If this field is numeric, enter an asterisk (*). You must define the number of decimal
places, and indicate whether negative numbers are allowed.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 127

&

ACTIVANT

Y/N Only

If this field requires a Y or N response, enter an asterisk (*).

"' Only

If this field must contain an asterisk (*) to be activated, enter an asterisk (*.)

Word Wrap Disp Lines
/ Max Lines

If the data in this field can wrap from one line to the next, enter an asterisk (*).

e Disp Lines is the number of lines to display on the screen.

e Max Lines is the maximum number of lines you can enter for this field.

Eclipse Dictionary

If this dictionary item is part of the core Eclipse system, this option displays an
asterisk (*) and you cannot modify it.

Archived

If this dictionary item has been archived, this option displays an asterisk (*).

An archived dictionary item is obsolete, but is still being used by various user-
defined report writer reports and user-defined screens. If you access a report or
screen that uses an archived dictionary item, the system displays a warning. We
recommend that you replace it with a current dictionary item, but you can also
ignore the warning. Customers who went ‘live’ on Eclipse on Release 8 will not
see dictionary items set to Archived.

An archived dictionary item does not display the first time you press F10 to add
items to mass load, report writer, order entry prompts, and user-defined screens.
Press F10 again to access archived items.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 128

&

ACTIVANT
Hotkeys in Dictionary Maintenance Screen

Hot Key Function

Copy Creates a dictionary item for the displayed file or another file, by copying the displayed
dictionary item.

Delete Deletes the displayed dictionary item from the dictionary file. The system prompts you
to confirm the deletion.

Note: You cannot delete a dictionary item that is open for editing. The system deletes
the latest revision, but does not delete the dictionary item.

Valid Makes the dictionary item a validated field. Validating data can be accomplished
using a manual list, from a control record that contains the list, another file’s @ID or a
verification subroutine that will verify the data.

I-Desc Displays the I-Descriptor Program Maintenance screen, where you can enter a
formula that determines the value of this dictionary item.

Expand Displays an expanded view of the Prompt or Description field.

e The expanded Prompt field contains 3 lines the same width as the value in the
Maximum Width field.

e The expanded Description field contains 3 lines that are 60 characters wide.

You can erase the displayed text and type new text for this field. Use this screen to
determine whether the text fits on one line or wraps to a new line.

Prompt Lists the standard prompts that you can use with this dictionary item.

When creating a dictionary item, press F10 to display the list of available prompts.

Log Displays the Maintenance Log Viewing screen for the displayed dictionary item.
Test Selects a record from the file and displays the output defined by this dictionary item.
Access Displays the Access Control List screen, where you can designate user IDs or group

IDs that can access the data in this record from a laptop or Palm computing device
and the level of access for each ID.

Key Use to identify the names of files for which this dictionary item is the key.

For each entry, press F10 and select a file name.

Undo Eclipse Dictionaries are now being tracked with version numbers. If the undo option is
used on a dictionary item that is a Version 1, the system will delete the dictionary as if
you used the delete hotkey. If however, the dictionary item is a 2" or 3" version, the

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 129

&

ACTIVANT

undo option would back out the version to the previous version number.

Close

If you edit a dictionary item in the system that is not marked as an Eclipse Dictionary
(those will be view only) the system will keep the dictionary open to you until you have
completed it. When you are done, you should close the dictionary. You will know if
the dictionary is open or closed based upon the “Open To: “, message that will
appear in the upper right hand corner.

Program

The program hotkey will open a window to create a subroutine that will exist only at
the dictionary item level. Any subroutine created here will not be a Basic Program but
a Dictionary Program stored at the dictionary level.

Note: Programming dictionaries will not be discussed in this class. This option is
instructed in the “Basic Programming” class.

Release 8

UniVerse Data Structures with Report Writer and Mass Load Page 130

&

ACTIVANT

Creating an I-Descriptor

An I-Descriptor (interpretive descriptor) is a symbolic field derived from real data or a
formula applied to real data. You can use [-Descriptors to manipulate strings of
information or calculate values for selecting, sorting, and displaying data on reports.

For example, in the ENTITY file the dictionary item called ADDR.LINE2 is an
[-Descriptor that refers to the second line of the entity’s address. The formula that defines

this I-Descriptor selects the second value of the second attribute in the record.

Use the Eclipse Dictionary Maintenance screen to create [-Descriptors.

Eclipse Dictionary Maintenance

File Hame : ENTITY

Update Subroutine
Case Mapping
Format (Output)
SFA Category

Bopy | Melete | Malid | Mi-Desc | Effpand | HErompt | Mog | Hest | [ccess | [Hev

Dict ID : ADDR.LINEZ
Dict Type : I Attr# : 0 Val# : Subval#t :
Description : ADDRESS LINE 2
Prompt :
Data Format
Justify (L/R) :L {) Date Year
Maximum Width 30 {) Numeric Decim : Negs:
Hulti-Yalued (Y/N) N {) ¥/N Only
Sub-Valued (Y/N) : N {) "=’ Only
Required (Y/H) N {) Time
Allow Update (Y/H) : N {) Hord Wrap Disp Lines: Max Lines :
(

) Eclipse Dictionary

Fill in the appropriate File Name and Dict ID for the [-Descriptor. Enter the letter I in the
Dict Type field. An I[-Descriptor describes a symbolic field for a file. Fill in the data
format to determine how the output of the I-Descriptor will be displayed when the
[-Descriptor formula is processed.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 131

&

ACTIVANT

Use the I-Desc hot key to open the I-Descriptor Program Maintenance screen, and then

enter the [-Descriptor formula.

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : ADDR.LINE2

@RECORD<2,2>

lest | Find Subr | Edit Subr | Bet Common

Elements in an I-Descriptor Formula
An [-Descriptor formula can contain any of the following elements:
e Field names
e Operators
Arithmetic
Relational

Logical
Conditional

O O O O

e (Constants

o Numeric
o String

e Internal variables

e Substring extraction expressions

e File transfer function (the TRANS function)
e Other BASIC functions

Note: Do not use symbols or operators in your I-Descriptor names.

Release 8 UniVerse Data Structures with Report Writer and Mass Load

Page 132

&

ACTIVANT
Field Names

An I-Descriptor can refer to data in another field by specifying the dictionary item name
in the formula. The dictionary item must refer to an element that is defined in the
dictionary file where the I-Descriptor is compiled. When Eclipse processes the
[-Descriptor formula, the current data value of the dictionary item is used.

For example, an I-Descriptor formula that uses the values from the Surplus and Rep
Cost fields to determine the value of the surplus, uses the names of these dictionary items
in the formula as follows: (SURPLUS * REPCOST).

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 133

Operators

&

ACTIVANT

I-Descriptor s can use arithmetic, relational, logical, and conditional operators in their
formulas. To avoid unintentional conflicts with operators, Eclipse suggests that you do
not use symbols or operators in your dictionary names. For example, use BAL.60.PLUS
instead of BAL.60+ and use PROD.NUMBER instead of PROD#.

Operators are listed in the table below in order of precedence. Multiple symbols exist for
operators of the same description and may be used interchangeably. Eclipse suggests
always using parentheses in a formula to control operator precedence.

Operator Description

ok Exponentiation

A

* Multiplication

/ Division

+ Unary plus

- Unary minus

+ Addition

- Subtraction

: Concatenation

CAT

< Less than

LT

> Greater than

GT

= Equal to

EQ

NE Not equal to

<>

#

><

<= Less than or equal to

=<

LE

#> Not greater than (same as LE)

>= Greater than or equal to

=>

GE

#< Not less than (same as GE)

MATCHES String matches pattern

MATCH

AND Performs a logical AND function on two formulas to produce a true (1) or false

& (0) result. If both formulas are true, the formula evaluates to 1 (true).

OR Performs a logical OR function on two formulas to produce a true (1) or false (0)

! result. If either formula is true, the formula evaluates to 1 (true).
Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 134

&

ACTIVANT
Testing I-Descriptors
Use the Test hot key on the Eclipse Dictionary Maintenance or I-Descriptor Program
Maintenance screen to test an I-Descriptor. This displays the Dictionary Testing screen,

where you can enter record IDs from the file for which the I-Descriptor is defined.

Note: When common data is required for an I-Descriptor, use the Set Common hot key
to enter that data before using the Test hot key.

Dictionary Testing
File IDs :
Show Blank VYalues : V¥

Begin | MDs F12-Abort

After entering the record IDs for the test and indicating whether to list fields whose
values are blank, use the Begin hot key to do the test. The system displays the contents of
the field described by this dictionary item for each test record.

In this class, due to the volume of students we ask that you test the dictionary items you
create by using the LIST command in TCL.

Exercise 9.1

Find an I-Descriptor in the file assigned by your instructor and test the dictionary item.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 135

&

ACTIVANT

Lesson 10
Creating Mathematical I-Descriptors

Objectives

After you complete this lesson, you will be able to:

e Formulate mathematical expressions using Dictionary Maintenance
e Test your dictionary items

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 136

&

ACTIVANT

I-Descriptors that use a Mathematical Formula

The I-Descriptor formulas in the following examples use mathematical operators. When
dealing with a mathematical formula, be aware of the decimal positions. If dictionary
items in a formula do not have the same number of decimal positions, you may not get
the desired result.

Example 1

In this example the mathematical formula is derived from two existing dictionary items.
Between the dictionary items is the mathematical function that takes place. The
I-Descriptor called OVER_CRLIMIT is calculated by subtracting the output of the
dictionary CR_LIMIT from the output of the dictionary AR _BAL.

I-Descriptor Program Maintenance
File Hame : ENTITY
Dict ID : OVER_CRLIMIT

AR_BAL - CREDIT_LIMIT

Example 2

This example also creates a formula using two dictionary items. The COST.DIFF is
calculated by subtracting the output of FIRST.COST from the output of LAST.COST.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : COST.DIFF

LAST.COST - FIRST.COST

This dictionary item would be an archived dictionary if you were upgraded from a
Release 7 to a Release 8 account.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 137

&

ACTIVANT
Example 3

The formula in this example utilizes three dictionary items. It calculates the sum of the
three values.

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : BAL.0OVER6BDAYS

BAL . 66DAYS+BAL . 90DAYS+BAL . 126DAYS

Example 4

The asterisk is used for multiplication. The formula in this example multiplies the values
of two existing dictionary items.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : SURPLUS%

SURPLUS = REPCOST

Example 5

The following formula adds the values of two dictionary items. Note that there is a minus
sign before the first dictionary item.

I-Descriptor Program Maintenance
File Name : PSUB
Dict ID : TOTAL.INV.AMT

—INY.AMT+TAX. AKT

If you view the raw data in the PSUB file, the sale amount of outgoing inventory displays
as a negative value. The minus sign in this formula changes the value of the dictionary
item to a positive number. Therefore, the output of the INV.AMT becomes a positive
value, which is then added to the TAX.AMT

BID. e 0TY.......
207671708690750265054 " 1"2"S"CTR -4
4047717086 75750166968 171" CIR -1
941271708511750669605 7171478 CTR -20

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 138

&

ACTIVANT
Example 6

The following formula uses multiple operators. You are not forced to create formulas
based only on dictionary items that already exist. In this example a hard-coded text string
of information is used within the formula. The formula calculates the Gross Profit
Percentage by multiplying the value of the GP$.CMP dictionary item by 1000, and then
dividing that amount by the value of the SUB.AMT dictionary item.

I-Descriptor Program Maintenance
File Name :

AR
Dict ID : GP%(CHP)
GP$.CMP = "1080" / SUB.AMT

Example 7

The final example shows two subroutines used in a subtraction formula.

I-Descriptor Program Maintenance
File Name : AR
Dict ID : GP$.CMP

SUBR(’DICT.GET.LEDGER.VYALUE’,15) - SUBR(’DICT.CHP.COST.CALC")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 139

&

ACTIVANT
Exercise 10.1

1. Create a dictionary item in the PRODUCT file that multiplies the on-hand quantity by
the replacement cost of the product.

2. Test your dictionary item using the Test hot key or using the LIST command in TCL.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 140

&

ACTIVANT

Lesson 11
Creating Internal Variable I-Descriptors

Objectives

After you complete this lesson, you will be able to:

Create dictionary items that return values or sub-values of an attribute
Use the @ID variable in an I-Descriptor
Create [-Descriptors using internal variables

Use the @RECORD, @ID, and @VM internal variables

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 141

Internal Variables

&

ACTIVANT

An I-Descriptor can use a number of pre-defined variables within the formula. Some of
these variables are “short cuts” for other functions.

Internal Variable | Returns...

@n the value of the previous expression, where 7 is a sequential
number. That is, the result of the first expression is assigned to
internal variable @1, the result of the second expression is assigned
to internal variable @2, etc.

@AM an attribute mark (the same as using the function CHAR(254)).

@ID the record identifier (also known as the Item ID or the Record ID),
which is the “key” to the record. For example, in the Customer file,
@ID returns the customer number; in the Product file, @ID returns
the product number.

@RECORD the entire record, including attributes, multi-values and sub-values.
@RECORD is a dynamic array (a table of data) containing these
elements.

@SVM a sub-value mark (the same as using the function CHAR(252)).

@VM a value mark (the same as using the function CHAR(253)).

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 142

&

ACTIVANT
Using the @ RECORD Variable

The @RECORD variable can return an entire record, an entire attribute in a record, or a
value within an attribute.

Example 1

This dictionary item returns the first attribute of a record in the PRODUCT file. This
returns all of the information in the attribute, regardless of whether it is multi-valued

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : DESCR

[ERECORD<1>

lest | @ind Subr | [Edit Subr | Bet Common

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 143

&

ACTIVANT
Example 2

This dictionary item returns a product’s UPC number, which is stored in the first value of
attribute 63 of each PRODUCT file record.

Attribute 63 stores the UPC in the first value, User Defined #1 in the second value, User
Defined #2 in the third value, User Defined #3 in the fourth value, and User Defined #4
in the fifth value. This I-descriptor is saying, go to attribute 63 in the PRODUCT file and
return only the value that is stored before the first value marker.

N 1-Descriptor Program Maintenance —ETUNIEY
y File Name : PRODUCT
Dict ID : UPC

@RECORD<63,1>

Test Find Subr | Edit Subr | Set Common

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 144

&

ACTIVANT
Example 3

This dictionary item returns the 3™ multi-valued position of attribute 26 of each
PRODUCT file record.

I-Descriptor Program HMaintenance
File Name : PRODUCT
Dict ID : CREATED.BY

ERECORD<26, 3>

est | Hind Subr | Edit Subr | Het Common

The following TCL display of raw data shows a PRODUCT file record. Attribute 26
displays 3 value markers, which indicate that there are 3 sets of information in this
attribute. The 3™ value of this string shows us that ARTHURW created this product. The
1 and 2™ values show the date and time the product was created.

101316

a0l ?ﬁg—l@ ¥ 6 1/2 HEX CAP SCREW PKG*GR-5 ZINC PLTD
2

004 gSSAYZFHSTENERS

ges C
@09 FAST

FAST

026 11432751078 ARTHURW®
*L6347

873 FASTNS™FASTNS

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 145

Example 4

&

ACTIVANT

Not only is the following dictionary item returning the specific information from the
ENTITY file, but it is performing a BASIC function as well.

If @RECORD<7,1> contains a value of 1, the record is a bill-to. If @RECORD<7,2>
contains a value of 1, the record is a ship-to. A customer can be a bill-to, ship-to, or both.
The following dictionary item displays a value of 1 for ENTITY records that are flagged
as being a ship-to-only customer; otherwise, it displays a value of 0.

File Name : ENTITY
Dict ID : SHIPTO.ONLY

I-Descriptor Program Maintenance

AND@RECORD<7,2> =

ERECORD<7,1> = "~ QTQ GRECORD<7,2> = "1" OR GRECORD<7,1> = "0"

est | Hind Subr | Edit Subr | Bet Common

The following screen shows a customer that is flagged as a ship-to customer.

Customer Maintenance

Customer/New : 41477 W14?
Name :ASC () Bill To
Address:13222 gROSSBECK {=) Job or Ship To
: {) Branch

City :ROSEVILLE {=) Branch Cash Acct
Zip 148066 ST:MI Country: {) Prospect
Sort By:ASC (P) PO/Release# Required
Bill :Argus Group {) Auto-Delete
Index :ASC

Contacts Phones Bal Fwd/Open Iten:
1. B/0 Status :C
2. Out Salesperson :HOUSE
3. In Salesperson :HOUSE
L. Ship Via:PN NORWALK
5. Frt In Exempt (Y/H) : N
6. Frt Out Exempt {Y/N): N

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 146

&

ACTIVANT

Following is a partial TCL listing of the raw data in this customer’s record. The asterisk
from the Job or Ship To field above is reflected as a 1 in the second value of attribute 7.

41477
0001 ASC
0002 13222 gROSSBECK®
0003 ROSEVILLE
0004 MI

0005 48066
000d
000y 21

Exercise 11.1
1. Using your initials and the word BILLTO, create a bill-to-only dictionary item for the
ENTITY file, similar to the ship-to-only dictionary item described above.

2. Test the dictionary item using @ID 41725. This is a bill-to-only customer in the
ENTITY file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 147

&

ACTIVANT
Using the @ VM Variable

Using @VM inserts a carriage return in the dictionary item. In the following example,
L#16 defines the number of left-justified character spaces to be allocated for displaying a
piece of data.

The following dictionary item uses and IF THEN ELSE statement (discussed in more
detail later) to display a customer’s name and address. If a second address line exists, the
dictionary item displays four lines of information; otherwise, it displays three lines of
information. The city, state, and Zip code are concatenated and displayed on the same
line. Because 16 character spaces are allocated for each city name, the state and Zip
codes align. The @ VM variable inserts the line breaks.

I-Descriptor Program Maintenance
File Hame : ENTITY
Dict ID : NA

TF @RECORD<2,2> THEN

@RECORD<1> : @YM:@RECORD<2,1>: @YH:@RECORD<2, 2> : @YM: @RECORD< 3> "L#16™ : BRECORD< 4> "L
#3" : GRECORD<S> ELSE

@RECORD<1> : @YM:@RECORD<2,1>: @VM: GRECORD<3>"LH#16" : BRECORD<4>"LH3™ : @GRECORD<5>

lest | Eind Subr | [Edit Subr | Bet Common

The following list shows the output for this dictionary item.

17859 JOE BENNETT

12345 MAIN STREET

MAHOPAC NY 10541
19497 ECLIPSE PLAY ACCT

12345 MAIN STREET

CROTON NY 18520
17060 ECLIPSE PLAY ACCT

12345 MAIN STREET

PELHALM NY 10883
14623 ECLIPSE PLAY ACCT

12345 WAIN STREET

SCARSDALE NY 10583

This dictionary was used when we created our mailing labels report.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 148

&

ACTIVANT
Exercise 11.2
1. Using your initials and the word PROD as the dictionary ID, create a dictionary
item that will display three lines of information.

e On the first line, display the first line of the description.

e Leave the second line blank.

e The third line should display the price line of the product, the status of the
product and first sell group of the product.

Make sure that the third line of information is spaced properly.
2. Test the dictionary item.

The test output should be similar to the following example:

11494 YoW-v-60-D OAK DRAWER BASE
BER 2 BER

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 149

&

ACTIVANT

Lesson 12
Creating Field Command I-Descriptors

Objectives

After you complete this lesson, you will be able to:

e Create [-Descriptors using the FIELD function

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 150

&

ACTIVANT
FIELD Function

The FIELD function takes part of a delimited string and returns the specified occurrence
of the contents within the string. The syntax is:

FIELD(STRING,DELIMITER,POSITION)
e Field is the command being used.
e String is the element from which we are extracting a piece of information.
e Delimiter is the character or space that separates data within the string.

e Position is a number that represents where the data is stored within the string.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 151

&

ACTIVANT

Example

The following I-Descriptor formula extracts the 2" word of the description in the
PRODUCT file. The FIELD function states the following three pieces of information:

e The string of data from which you will obtain the information is the first line of
the first attribute in the record.

e The character that delimits words in the description is a space.

e The word you want is in the 2™ position.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : DESC.HWORD.2

FIELD{@RECORD<1,1>," ’,2)

lest | Eind Subr | Edit Subr | Bet Common

The following TCL listing shows the values that would be listed for this dictionary item:

@ID....... DESCRIPTION. DESC.HWORD
101467 1/2 ¥ 1 1/2 CARR SCR BULK GR-5 b

ZINC PLTD
20810 CENTER MIRROR FOR BMSKSCTVL36 MIRROR
17038 BA-711-4WH SOAP DIS.(RP-011) SOAP
25481 P.BRASS 6" TUB SPOUT 6"
101468 %(%DH 1 1/2 CARR SCR PKG GR-5 ZINC X
20811 LEFT MIRROR FOR BMSXSCTYL4S MIRROR
101469 %{%DH 1 374 CARR SCR PKG GR-5 ZINC X
29482 CHROME 6" TUB SPOUT 6"
153 1/2¥3/4 CXF ELL 707-3 4707-3R CHF
20812 RIGHT MIRROR FOR BMSKSCTVL4S MIRROR
101470 %(%DH 2 CARR SCR BULK GR-5 ZINC b

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 152

&

ACTIVANT
Using the PSUB File

When an order is created, the order information is stored in the LEDGER and
ORDER.QUEUE files. Once an order is processed, the summary information moves from
the ORDER.QUEUE file to the AR (Accrual Register) file and the product detail
information moves to the PSUB (Product Subsidiary) file.

The PSUB file contains line-item detail for closed ledger transactions, such as sales
invoices, received purchase orders, transfers, and inventory adjustments. Each product on
a transaction creates one record in this file. Each product creates two records if the
shipping branch is different from the pricing branch.

E%ST PSUB 10:49:24am 28 Nov 2001 PAGE 1

2076717086907 5026505417275 CTR
4047717086757501649687 17175 CTR
94127170851175066960571714" 5 CTR
176071708452750665680717"11 S CTR
1212771711171750417511717257S"HHSE
3435471711756075160013171747SHHSE

The key to the record is comprised of a concatenation of information unique to an
inventory movement, as shown in the following example. A tilde (~) delimits items that
comprise the record ID.

40929~1~11499~51000000~1~2~S~WHSE

These items contain the following information each field separated by a tilde:
e Field 1 - PRODUCT ID = product Id
Field 2 — BR = branch on transaction
Field 3 - SHIP_ DATE = date material shipped
Field 4 — ORD_ID = order number for the transaction
Field 5 — INVOICE NBR = the order generation for the transaction
Field 6 — LED DET ID = the position of the product on the transaction
Field 7 - QTY_TYP = the type of material that shipped (Stock, Defective,
Tagged etc). If the order is a direct shipment this field will be a “D”.
e Field 8 - LOCATION = the bin location the material shipped from or was
received into. If the order is a direct shipment this field will be the internal id for

the vendor.
e Field 9 - COMPONENT POS = the component part numbers if the item was a
kit.

e Field 10 — DIFF_BR = the shipping branch if it is different from the BR (field 2)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 153

&

ACTIVANT

Example 1

The following dictionary item returns the Internal Part number from the @ID of the
PSUB record. This dictionary item can be used as the key to obtain access to the
PRODUCT and other files where the @id of the file is the internal ID of the PRODUCT.

I-Descriptor Program Maintenance —{BTN IO ———
File Hame : PSUB
Dict ID : PRODUCT_ID

FIELD(@ID, ™" ,1)

Example 2

The following dictionary item selects the order number from the @ID of the PSUB file.
This dictionary can be used as the key to obtain access to the LEDGER file.

I-Descriptor Program Maintenance —TMIME—————
. File Hame : PSUB
Dict ID : ORD_ID

FIELD{@ID, ™’ ,4)

Example 3

The DIFF_BR dictionary item in the next example can be used to isolate products that are
shipping out of a different branch than the pricing branch.

I-Descriptor Program Maintenance — eIl ——
I File Name : PSUB
Dict ID : DIFF_BR

FIELD(@ID," ™" ,18)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 154

&

ACTIVANT

The product serial number is also stored in the PSUB file; however, it is in a file attribute
rather than the @ID of the file.

Exercise 12.1

1. From the ENTITY file create a dictionary item that returns the 2™ word of the first
line from the Address field.

Exercise 12.2

1. From the PRODUCT file, create a dictionary item that returns the 3™ word of the
second line of Keywords.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 155

&

ACTIVANT

Lesson 13
Creating TRANS Command I-Descriptors

Objectives

After you complete this lesson, you will be able to:

e Create and use TRANS command I-Descriptors

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 156

&

ACTIVANT
TRANS Function

The transfer functionality in dictionary maintenance or the ability to access data from
another file is very similar to the Files Option on your report writer / mass load screen.

The TRANS function accesses data in another file and returns a value for use in the
I-Descriptor formula. In other words, it “transfers” the data.

You can do this if a field in the source file is a “key” for records in the other file. For
example, you are running a report from the PSUB file and want to display the customer
name, which is stored in the CUSTOMER file. A field in the PSUB file contains the
customer number. You can use this number to access the corresponding record in the
CUSTOMER file and then transfer the customer name from that record back to the PSUB
file.

Example 1
When running a report from the PSUB file you want to list the customer name with each
transaction, but the name is not stored in the PSUB file. So, you need to create a
dictionary item in the PSUB file that uses the TRANS function to transfer the name from
the CUSTOMER file. The syntax of the TRANS function is as follows:
TRANS(FILENAME,KEY,ATTRIBUTE #,“X”)

e Trans is the command.

e Filename is the name of the file that contains the information you require.

e Key is the string of data from the file you are currently in that matches the @ID
or Key of the records in the file from which you want to obtain information.

e Attribute is the attribute number in the record from which you are retrieving the
information where the required data is stored.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 157

&

ACTIVANT
e The transfer code “X” indicates that if the attribute contains no data, TRANS
returns a null value. Use the transfer code “C” to instruct the function to return the
@]ID for debugging purposes.

In the following screen, the TRANS function uses the data in the 4™ field of the PSUB
record to access the correct record in the ENTITY file and return the value of attribute
number 1.

I-Descriptor Program Maintenance
File Name : PSUB
Dict ID : NAME

TRANS("ENTITY ' ,@RECORD<4>,1, "X’)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 158

&

ACTIVANT
Example 2

In this example, from the PRODUCT file you access the BUY.LINE file and retrieve the
name of the buyer. The key to the BUY.LINE file is contained in attribute 12 of the
PRODUCT file. The buyer’s name is stored in attribute 17 of the BUY.LINE file.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : BUYER

TRANS(*BUY.LINE’,@RECORD<12>,17, K")

If a dictionary item corresponds to the key to another file, then that dictionary item can be
used instead of the @RECORD statement. The dictionary item BUY LINE in the
PRODUCT file, points to attribute 12.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 159

&

ACTIVANT
Example 3

The AR file contains multiple attributes that can link back to the ENTITY file. As shown
below, attribute 10 contains the entity’s bill-to ID and attribute 15 contains the ship-to ID.
These ID’s can be the same or they can be different for any given transaction.

S0671864.001
001 S
002 *00000.CO000000
003 8553°
004 17"17"17278"17270" 1737651755
005 -1026"456"-456"1085"-59*-1085" 1085
008 -10885
009 0
010 27510
013 8553
014 1
015 27510
020 I
028 0

Example 4

This TRANS function accesses the ENTITY file using the dictionary item that provides
the key to the ENTITY file. It returns the value of the first attribute of the ENTITY file,
which is the name. If there is nothing found, a null value is returned.

I-Descriptor Program Maintenance
File Name : AR
Dict ID : NAME

TRANS{"ENTITY" EN,"1","¥™)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 160

&

ACTIVANT
Example 5

The following TRANS function accesses the ENTITY file using the 15™ attribute in the
AR file as the key. It returns the value of attribute number 17 from the ENTITY file. This
is the multi-valued PHONES attribute. It then uses the <1,1,2> sub string extraction
expression to select the second phone number.

<x,y,z> allows you to extract the “x” file, the “y” value, and the “z” multi-value from
the record. You do not need to specify x, y, and z if you only need to retrieve x and y (<x,
y>) or just x (<x>). Use the <x,y,z> with the @RECORD variable to return specific
elements of a record.

When using the <x,y,z> on a trans routine, you must define all three segments to pinpoint
the value marker you want to return as shown below.

I-Descriptor Program Maintenance
File Hame : AR
Dict ID : SHIPTO.PHONE

IRANS(ENTITY,@RECORD<15>,17,"H")<1,1,2>

Exercise 13.1

1. From the AR file create a dictionary item that returns the outside salesperson from the
ENTITY file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 161

&

ACTIVANT

Exercise 13.2

1.

From the AR file, create a dictionary item that returns the writer from the LEDGER
file.

Note:

The key to the LEDGER file consists of just the first 8 characters of the @ID of the
AR file. You need to create a dictionary item that defines this key. Use the following
FIELD statement to return the first 8 characters:

FIELD(@ID,’.’,1)
The LEDGER file holds multiple generations. Information can be different in the

header screen for each generation. Eclipse has created subroutines that work through
the multiple generations to pull back the information that you are looking for.

Release 8

UniVerse Data Structures with Report Writer and Mass Load Page 162

Using the ORDER.QUEUE File

&

ACTIVANT

Use the ORDER.QUEUE file to run reports on all the open orders in the system. These
orders have not yet gone to the AR or the PSUB file. This is a summary file that doesn’t
contain many details. Therefore, you need to create [-Descriptor dictionary items that
transfer detail information from other files.

$1013863.12058.1

001 B

002 1

003 1

004 -166000
000 -106245
006 -106245
007 41715
008 41715
009 TAMKYF
010 PETERA
011 TAMMYF

The following I-Descriptor uses attribute 7 (the bill-to customer ID) of the
ORDER.QUEUE file as the key to access the ENTITY file and then transfer attribute 1
(the customer name) from that file.

Dict ID

File Name :

I-Descriptor Program Maintenance

ORDER . QUEUE

: BT.NAMKE

Release 8

UniVerse Data Structures with Report Writer and Mass Load

IRANS(ENTITY' ,@RECORD<?>,1,'¥")

Page 163

&

ACTIVANT
Using the PSUB File

The PSUB file contains line-item detail for closed ledger transactions, such as sales
invoices, received purchase orders, transfers, and inventory adjustments. Each product on
a transaction creates one record in this file. The system creates two records for each
product if the shipping branch is different from the pricing branch.

The following example shows a record from the PSUB file. The record key is comprised
of a concatenation of information unique to an inventory movement. The customer ID
associated with the transaction is stored in the 4™ attribute.

207671708690750265054717275 CTR
001 -4

002 3784000000
003 2247000000
004 31458

005 31458

006 1

007 1

The following I-Descriptor formula uses attribute 4 as the key to the ENTITY file and
transfers attribute 1 (the customer name) of that file back to the PSUB file.

I-Descriptor Program Maintenance
File Name : PSUB
Dict ID : NAME

TRANS{ ENTITY’ ,@GRECORD<4>,1, K’)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 164

&

ACTIVANT
The following I-Descriptor uses a portion of the PSUB record ID to access the LEDGER

file and return the value in attribute 13 (the customer’s P/O number).

I-Descriptor Program Maintenance
File Mame : PSUB
Dict ID : PO.NUMBER

TRANS({’LEDGER’ ,FIELD(@ID, ™" ,4),13, K")

The next [-Descriptor uses a different portion of the PSUB record ID to access the
PRODUCT file. The following example returns the product description from attribute 1.

L-Descriptor Program Maintenance
File Mame : PSUB
Dict ID : ITEM.DESC

DRANS(" PRODUCT " ,FIELD(RID, "~ ,1),1, K"}

Using a Double TRANS Command

The following example shows how to use a double TRANS command.

I-Descriptor Program Maintenance
File Name : AR
Dict ID : BANK

IRANS(GENLED,FIELD(TRANS(LEDGER,FIELD{@ID, . ,1),13,°K'), 7 ,1),3,"K")

The value obtained from the inner TRANS command is used as the key to records in the
file named in the outer TRANS command. The inner command uses the first value of the
AR file’s @ID as the key to records in the LEDGER file. The command obtains the value
from attribute 13 in LEDGER file. The outer command then uses this value as the key to
records in the GENLED file. Once there, the command retrieves the bank description,
which is stored in attribute 3.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 165

&

ACTIVANT
Using Notes Files

On the Vendor Maintenance and Customer Maintenance screens there is a hot key called
Notes that you can use to enter internal notes. Information entered in this field is stored in
the ENTITY.NOTES file. The key (record ID) for records in this file is the same as the
key for the customer and vendor records in the ENTITY file.

The following example uses the @ID of the ENTITY record to retrieve attribute 3 from
the ENTITY.NOTES file.

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : 1099.REQ

TRANS{ENTITY.NOTES,.@ID,3, 'X’)

You can also go the other way. The following example uses the key of the
PRODUCT.NOTES file to access the PRODUCT file and transfer the value in the 9™
attribute.

1-Descriptor Program Maintenance
File Name : PRODUCT.NOTES
Dict ID : PRICE.LINE

TRANS(“PRODUCT",@ID,9,'K")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 166

&

ACTIVANT
Exercise 13.3

1. From the PSUB file, create a dictionary item that returns the weight of the product.

Exercise 13.4

1. From the ORDER.QUEUE file create a dictionary item that returns the ship-to Fax
number.

Exercise 13.5

1. From the PRODUCT file create a dictionary item that returns the buyer’s name.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 167

&

ACTIVANT

Lesson 14
Basic Functions

Objectives

After you complete this lesson, you will be able to:

e Use the basic functions LEN, TRIM, OCONYV, and STR
e Write a conditional expression using IF, THEN, and ELSE

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 168

&

ACTIVANT

Basic Functions

Many BASIC functions can be used in I-Descriptor formulas. The same syntax applies
whether using a BASIC function in an [-Descriptor or in a BASIC program.

The following topics describe a few commonly used functions.

LEN Function

The LEN function returns the length of a string. For example, if a product’s description is
“BLACKFORD 10661615 WATERHEATER” and an I-Descriptor formula uses the
function LEN(DESC), the value returned is 30.

The I-Descriptor formula in the first example returns the character length of the product’s
buy line. You can use this function to identify records in which the buy line contains too
many characters.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : JH.LEN.LINE

MEN(BUY.LINE)

The I-Descriptor formula in the second example adds the length of the A/R record, the
length of the record ID, and the number 9. This formula calculates the number of bytes in
the record.

I-Descriptor Program Maintenance
File Hame : AR
Dict ID : SIZE

LEN(GRECORD)+LEN(@ID)+9

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 169

&

ACTIVANT

The following listing shows the output of this dictionary item.
@n......... SIZE.
S0671864.001 154
$0421802.001 138
$0418573.802 165
$0371864.001 138
$1008886.005 207
$1012115.804 234
30675093.001 156
$1000000.001 125
$1008886.006 127
$0703229.801 152
$0128260.001 102
$1003229.001 129

$0678322.001 130
£0003229.001 4653

IF THEN ELSE Operators

Use the IF/THEN/ELSE operators in [-Descriptor formulas to create a conditional
statement. The basic syntax is:

IF formula one THEN formula two ELSE formula three

If the first formula is true, then process the second formula. If the first formula is false,
then process the third formula. Both the THEN and ELSE operators are required by the
formula syntax.

Example 1

The conditional formula in the following example, displays the data from the city, state,
and Zip code dictionary items on one line. The city is concatenated to a comma and
space, the state, another comma and space, and then the Zip code. Use this I-Descriptor to
display the information in one column of a report rather than three separate columns.

I-Descriptor Program Maintenance
File Hame : ENTITY
Dict ID : CSZ

IF CITY NE "" THEN CITY:™, ":STATE:™ ":ZIP ELSE "~

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 170

&

ACTIVANT
Example 2

The I-Descriptor in the following example enables you to sort your CUSTOMER file by
bill-to, by ship-to, by customer Sortby order. This dictionary is used primarily for sorting
data for your reports. You can also use it to sort your records when listing them on
screens in Eclipse. After each bill-to customer, the ship-to customers are listed in order
according to the value in the customer record Sortby field.

The formula for this I-Descriptor consists of three expressions. You can enter each on a
separate line or enter them on one line with each expression separated by a semicolon, as
shown in this example.

I-Descriptor Program Maintenance
File Hame : CUSTOMER
Dict ID : BT.ST.SORT

IF ENTITY.TYPE.1 = "1" THEN "1™ ELSE "2"; @RECORD<8>; @1:@2

In the first expression, the ENTITY.TYPE.I dictionary item is the flag that indicates
whether the customer is a bill-to or not. When the flag is set to “1” the record is a bill-to.
When the flag is set to “0” the record is a ship-to. If the dictionary item contains a “1,”
then assign a value of “1” to this expression. Otherwise, assign a value of “2” to the
expression.

The second expression @RECORD<8> identifies the field that contains the SORTBY
information in the Customer file.

The third expression @1:@2 concatenates the value of the first expression (“1” or “2”)
with the value of the second expression (the data from the Sortby field).

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 171

&

ACTIVANT

Entering this I-Descriptor on the File Definition Maintenance screen in the Select SortBy
Dict ID field enables you to sort your index differently.

File Definition Maintenance

File MName : CUSTOMER

Description : Lustomer File

Physical File : ENTITY

Parent File : ENTITY

Dictionary File: CUSTOMER Type :

Maint Logging : & - Save Deleted Items

Log Change Rsn : Y Min Days Before Purge : 130 Min # Logs to Save : 160
Select Index Dict ID : Hot Sync (Y/N) :
Select SortBy Dict ID: BT.ST.SORT Prevent Mass Load (Y/N) : N

Disp Conv Ewxpr/Attb : TCUSTOMER:K:1:1
Input VYalidation Subr: VERF.CUS.ID
Pre-Index Conv Subr : DICT.SOUNDA
Update Validation

Update Subr

Select Filter Subr

New ID Verification : No New
Keep File in Sync With Parent (¥/N} : N
Dict faint | Melete | Branch Specific F12-Abort

Using IF THEN ELSE to Fix a Problem

What can we do to fix the following I-Descriptor formula?

I-Descriptor Program Maintenance
File Name : AR
Dict ID : GP%{CHP)

GP$.CMP = "1000" / SUB.AMT

This dictionary returns errors if the value is zero.

I-Descriptor Program Maintenance
File Hame : AR
Dict ID : GP%(CHP)

IF SUB.AMT # *0° THEN GP%.CMP = "1600" / SUB.AMT ELSE '@’

Use the IF, THEN, ELSE statement to make sure no errors occur.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 172

&

ACTIVANT
Examples of other IF THEN ELSE Dictionaries

From the Product File:

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : PURCH.UOH

IF @RECORD<16,2> # "* THEN BRECORD<16,2> ELSE "17;
FIELD{@RECORD<7>,@YM, @1)

Dest | [Mind Subr | Edit Subr | Bet Common

The above dictionary will pass back the correct quantity value based upon the UOM flag on the
front screen of PFM for Purchasing.

Then it will use this to determine what the actual UOM Qty is based upon that flag.
This dictionary * 1 will provide an accurate mass load to the buy package quantity.

From the Entity File:

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : BRCH_SALES

IF SUBR{’DICT.CALC.SLS’ ,1,1,1,) = SHLES THEN "NO" ELSE
IF SUBR(’DICT.CALC.SLS" L SALES THEM “"NO" ELSE
IF SUBR('DICT.CALC.SLS' . ’ SALES THEM "NO" ELSE
IF SUBR{’DICT.CALC.SLS’ SALES THEM "NO" ELSE
IF SUBR{’DICT.CALC.SLS’, SALES THEN “"NO" ELSE
IF SUBR(’'DICT.CALC.SLS’, SALES THEM "NO" ELSE "YES”

»—u—u—u—u—n
s
OV
e e et

Oest | Bind Subr | Edit Subr | Het Common

The above dictionary narrows down a selection of customers who purchase from more than one
branch in the company.

The above dictionary item is sweeping through the branches to see if the sales that occurred in a
branch match the total sales for all of the other branches. If the sales do not match then the

customer is one who purchases from multiple branches.

Each line represents a branch. For this company they only had branches 1,2,4,5,6 and 7. They
do not have a branch 3.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 173

&

ACTIVANT

Character Strip
Example 3

The I-Descriptor formula in this example states if the record in the PSUB file is a sales
order, then multiply the quantity by the unit cost; otherwise, multiply the quantity by the
unit sell price. Because purchase orders do not have a unit cost, you can use this
dictionary item for both purchase orders and sales orders.

I-Descriptor Program Maintenance
File Hame : PSUB
Dict ID : EXT.COST

TF 0ID[1,11="8" THEN (QUANTITY=UCOST)/1000000 ELSE (QUANTITY=USELL)/1000000

We divide each of these values by 1000000 to place the decimal point in the correct
position. Eclipse stores the unit price and cost out to nine characters, as shown in the
following listing of raw data.

20767170869075026505471727S"CTR
001 -4

002 3784000000
003 2247000000
004 31458

005 31458

006 1

007 1

Example 4

The I-Descriptor formula in this example states that if the A/R record is a sales order, use
a subroutine that calculates the outgoing freight; otherwise, use the incoming freight. The
conditional statement enables you to use this dictionary item for both purchase orders and
sales orders.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 174

&

ACTIVANT

I-Descriptor Program Maintenance
File Name : AR
Dict ID : FREIGHT

IF @IDI1,1]1 = °S’ THEN -SUBR{’DICT.ASUB.AMT’, FGHT') ELSE FRT.IN

Exercise 14.1

1. From the ENTITY file, create a dictionary item that will return a TOTAL.CURRENT
balance. It should include the Future A/R bucket, Current A/R bucket, and Deposits.

Exercise 14.2

1. From the PRODUCT file, create a dictionary item that displays the price line if the
product is a stock product and the buy line if the product is a nonstock product.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 175

&

ACTIVANT
Exercise 13.3

1. Write a report from the PRODUCT file that shows the product’s inventory value at
Replacement Cost and also Average Cost. Show the difference between the two costs
on the report.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 176

&

ACTIVANT
STR Function

The STR function repeats a character string as many times as you want. You can use this
function to create separators in reports. The data within the quotation marks is the string
of characters that will print to the screen. This is followed by the number of times you
want this string to appear.

The following example prints happy faces for everyone!

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : DASH

BTR(":-)",70)

Use the Test hot key to view the results produced by an I-Descriptor formula.

Oflt ID. 31681

DASH. ... =):=):=):=):ic)i=)i=)ic)io)ic)ic)iz)ic)ic)im)ic)ic)io)iz)ic)io)ic)ic):
R T e R i FES R R FES R B E R i F RS i PR R ES FRO RS
R R e R R e E e E E E E E FE R E ER S ER ER RS ER R

The following I-Descriptor is typically used to insert lines on a report for data entry.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : ENTER

STR("_",5)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 177

TRIM Function

&

ACTIVANT

The TRIM function removes spaces between elements in a string so that only one logical
space separates each string element. For example, TRIM(DESC) removes unnecessary
spaces in a product’s description.

This enables you to isolate second and third words from a string of characters in which

there may have been a more than one space in between the words.

The following example retrieves the second word of the description from the PRODUCT
file while reporting from the PSUB file. Using the TRIM function guarantees that the
second word is returned.

Dict ID

File Name :

: MODEL

PSUB

I-Descriptor Program Maintenance

ETELD(TRIM{TRANS(’ PRODUCT ,FIELD(@ID, ™ ,1}.1,°%’))." ", 2)

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 178

&

ACTIVANT

Concatenation

6,9

Concatenation occurs when you combine two elements of a string together. A colon “:”’or
“CAT” represents concatenation. As discussed during lesson 7, concatenation can also be
applied to I-Descriptors as well as mass loading data. Sometimes creating a dictionary
item that concatenates different values can create a “key” to a new file.

Example 1

The following I-Descriptor concatenates the values of two dictionary items and inserts a
period between them.

I-Descriptor Program Maintenance
File Hame : PSUB
Dict ID : CATEGORY

GL.SOURCE: " . " :GL.TYPE

Example 2

In the next example, the formula concatenates the Entity ID from the AR file first with a
space and then with the actual Customer’s name.

I-Descriptor Program Maintenance
File Name : AR
Dict ID : BILL.#.NAME

BRECORD<1@>:" “:TRANS{ ENTITY’ ,CUST.NO,1,'X’)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 179

&

ACTIVANT
Example 3

The dictionary item in this example is commonly used to gain access to the AR file. The
AR file’s @ID or key to each record includes the order number and the generation. The
PSUB file stores this information in the @ID; however, each element in the PSUB @ID
is separated by a tilde (~) and the leading zeros have been stripped from the generation
number.

The dictionary item concatenates the order number, a period, and the generation number
to create a key to the AR file. This dictionary item also adds the leading zeros to the
generation number.

The R%3 forces a number of 1 to read 001. The “R” in R%3 indicates right justification,
the “3” indicates the number of positions, and the “%" fills in with zeros.

I-Descriptor Program Maintenance
File Hame : PSUB
Dict ID : FULL.OID

FIELD(@ID, ™ ,&): . :FIELD(@ID, ™" ,5)"R%3"

Example 4

The following dictionary item retrieves the first line of the address, makes sure that the
second field starts in the same position each time, concatenates an “F” and a space, and
then concatenates the fax number.

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : ADDR1&FAX

BRECORD<2,1>"L#30":"F ":E@RECORD<17,2>

The text within the quotation marks is a literal. Whatever is between the quotation marks
is what displays. In this example, the literal is an “F” and a space. The “L#30” forces the
address line to be left justified and the space allocated for it to be 30 characters long, even
if the address contains less than 30 characters. This guarantees that the Fax number will
always start at character position 31.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 180

OCONY Function

&

ACTIVANT

The OCONYV function converts an attribute according to a specified conversion code and
returns the converted output. For example:

OCONV(@RECORD<16>,“MCU”)

The value of @RECORD<16> is converted to uppercase (MCU is the UniVerse code for
“Mask Character Uppercase”). Refer to Lesson 4 for different conversion codes. You can
also refer to Jonathan E. Sisk’s Basic Programming Guide, which can be obtained from

http://www.jes.com/pb/.

The Eclipse search programs differentiate between upper and lower case characters. Use
OCONYV to change all characters to one case prior to using the search engine.

Dict ID

File Name :
: PROPER.NAKE

ENTITY

I-Descriptor Program Maintenance

OCONV {@RECORD<1>, "MCT™)

Release 8

UniVerse Data Structures with Report Writer and Mass Load

Page 181

&

ACTIVANT
DCOUNT Function

I bet that we can agree not all of the product descriptions have the same number of words
for you to be able to obtain the last word for every product.

The following dictionary counts the number of words in the product description. It
recognizes a space as the delimiter between words. Once it retrieves the count, we can
then determine where the last word exists in the description.

The FIELD statement in the next expression uses the count from the first expression to
extract the last word of the description. Even though each product description can be
different, this dictionary always retrieves the last word.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : DESC.LAST.WORD

DCOUNT(DESCR<1,1>," ’); FIELD(DESCR<1,1>,’ ’,@1)

This model can also be used if you wanted to extract the last value in a multi valued
string of data. By converting the value markers to spaces you can then count the spaces
to come up with the last value assigned to a data element.

Exercise 14.4

1. Create a dictionary item in the PRODUCT file that displays the following information
in a blocked format:
o Keywords

Description

Weight

Price Line

Buy Line

Hint: Use the NA dictionary item from the ENTITY file as a template.

Exercise 14.5

1. Create a dictionary item in the ENTITY file for the last word in the Name.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 182

&

ACTIVANT

Lesson 15
Using Subroutines

Objectives

After you complete this lesson, you will be able to:

e Learn about the capabilities of Subroutines in Eclipse
e C(Create a dictionary using a subroutine

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 183

&

ACTIVANT
Subroutines

Subroutines have been created by Eclipse programmers to be used in dictionaries. There are
times that the data needed can only be extracted using a subroutine because the system needs to
do more work than a simple trans or field command.

You may have encountered dictionary items using a subroutine. The arguments needed to be
passed into the subroutine may be different for each subroutine. This lesson will discuss what is
needed to use a subroutine on a dictionary item and how to recognize the requirements.

To view a subroutine you will need to access the Program editor program located from your
system programming menu.

File Name Edit Program Run Program
DICT.GET.LEDGER.YALUE DICT.GET.LEDGER.YALUE
E.ED.C,CF.R.S.,DS,T.C=,P. V. .. V
—Versiont— Last Updated By Uﬁen to 12 Open Pons
Mog | fpen List | ®lose | Colly | Copl Open | [un | (ndo Chg | Mocs | Collpare
Piltch Create | Bld Pgm Idx | Hind Obl] | SHow Calls Phalltom Run
Bend/Receive Data | [Ecomm | Nollify on Close

The system will want to know the file name for which the program is stored. There are:

SP System Programs

BP Basic Programs (90 % of our code)
FBP Field (or Fixed) Basic Programs

UBP User Specific (Custom) Basic Programs
CBP Client Modified Basic Programs

The filename for which these subroutines are stored is in the BP — Basic Program file.

The Edit Program prompt is where you want to key in the subroutine that is of interest to you.
In the above figure we will be viewing the subroutine called DICT.GET.LEDGER.VALUE.

Once you hit <enter> after typing in your subroutine the system will automatically position your
cursor in the “Option to Perform™ box. The system will default to the letter “E” which represents
Edit mode. We do not want to view our program in edit mode.

Option to Perform

In this field, select the option you want to run the edit for the selected program. The
options are all listed and described below.

e C - Compile this program (edit program) using the Eclipse pre-compiler.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 184

&

ACTIVANT
e C* - Compile this program without using the Eclipse pre-compiler. This option will
put your code straight into the BASIC compiler and should not be used very often.
You will never use this option in this manual, however we will discuss areas of our
code that differ from true PICK code.

e CD - Compile this program with debug window inputs.

e CF — Compile a list of programs (your active list). This option can be done after you
do a “Find” from the program editor to compile all of the programs you found in that
list.

e CT - Compile test(s) on the edit program. This option will perform a test compilation
before activating the new code. It is very important when you compile high profile
routines in develop or routines on a site. When a compile blows up, that code cannot
be accessed until you complete a successful compile on that routine.

e D — Delete the edit program from the file you specified in File Name. This option will
save a copy of the routine in the DP file.

e DS —Send a grid layout of the screen to the printer.

e DB — Database allows you to enter a UniVerse BASIC command and get help from
the on-line UniVerse help documents.

e DU - DU let’s you put in a Unix command and get help from the on-line AIX/UNIX
manual on that command.

e E — Edit the “edit program” with the Eclipse program editor.

e ED — Edit the “edit program” with the UniVerse line editor (not recommended for use
at Eclipse).

e EF — Use the Eclipse program editor to edit all of the programs in your active find
list.

e P — Print the edit program to the active printer.
¢ R —Run the edit program from this editor.

e S —Invoke the Eclipse screen editor to create or edit a screen with the same name as
the edit program.

e T — Drop down to Eclipse TCL (True Command Language).
e V- View the edit program in view only mode (no changes can be made).

e EV — Edit the “edit program” using the new GUI program editor.

Again the option we want to choose is V to view the program.

This class does not teach how to create a subroutine. Let’s dissect the following subroutine
together.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 185

&

ACTIVANT

DICT.GET.LEDGER.VALUE

SUBROUTINE (VAL,ATTB)

GN = DCOUNT(@ID,")
IF NUM(FIELD(@ID,",GN)) OR GN <= | THEN NULL ELSE VAL=";RETURN

BEGIN CASE
CASE ATTB[1,3] = "ID."

POS = FIELD(ATTB,'.',2)

VAL = FIELD(@ID,'.,POS+2)

RETURN
CASE INDEX(@ID,~',1)

OID = FIELD(@ID,~'4)

IDX = FIELD(@ID,~',5)

READV GEN.IDX FROM LEDFILE,OID,8 ELSE GEN.IDX ="
CASE GN=4

OID = FIELD(@ID,'.',3)

IDX = FIELD(@ID,.4)+0

READV GEN.IDX FROM LEDFILE,OID,12 ELSE GEN.IDX ="
CASE GN =2

OID = FIELD(@ID,'.,1)

IDX = FIELD(@ID,'.'2)+0

READV GEN.IDX FROM LEDFILE,OID,8 ELSE GEN.IDX ="
CASE OTHERWISE

OID = FIELD(@ID,'.,1)

IDX = FIELD(@ID,'.,3)+0

READV GEN.IDX FROM LEDFILE,OID,12 ELSE GEN.IDX ="
END CASE

LOCATE IDX IN GEN.IDX<1> SETTING GEN ELSE VAL="; RETURN

OE.GET.QSIGN QSIGN,0ID
BEGIN CASE
CASE NUM(ATTB)

LOCATE IDX IN GEN.IDX<1> SETTING GEN THEN
READV VALS FROM LEDFILE,OID,ATTB ELSE VALS ="
VAL = VALS<1,GEN>

END ELSE
VAL ="

END

IF ATTB>13 AND ATTB<19 THEN
VAL = VAL*QSIGN

END

CASE ATTBJ[1,3] = 'LL.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 186

&

ACTIVANT

TYPE = ATTB[4,99]
VAL ="
MATREAD LED FROM LEDFILE,OID ELSE MAT LED ="
LDIDS =LED(48)<l,GEN>
LD.CT =DCOUNT(LDIDS,SVM)
FORLDN=1TO LD.CT
LDID = LDIDS<1,1,LDN>
LD.GET LDID
PN =LD(1)
BEGIN CASE
CASE NUM(FIELD(TYPE,',",1))
MATBUILD WRK FROM LD
VAL<1,LDN>= WRK<TYPE>
CASE TYPE ="PN'
IF NUM(PN) THEN
VAL<I,LDN>=PN
END ELSE VAL<I,LDN>="
CASE TYPE[1,4] ='SQTY"
BEGIN CASE
CASE NUM(PN)
SP.QTY = (SUM(LD(5)<1,GEN>) + SUM(LD(6)<1,GEN>))*QSIGN
IF TYPE ='SQTY.PER' THEN
**% convert the UOM qty.
MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD ="
IF PRD(15) #" THEN
UMTBL = PRD(15)
END ELSE
READV UMTBL FROM PLNEFILE,PRD(9),3 ELSE UMTBL ="
END
IQ.TO.ALPHA UMTBL,PRD(7),LD(23),SP.QTY,,,,,ALPHA
SP.QTY = TRIM(ALPHA)
END
VAL<I,LDN>=SP.QTY
CASE OTHERWISE
VAL<1,LDN> = "*'
END CASE
CASE TYPE[1,4] ='0QTY'
BEGIN CASE
CASE NUM(PN)
ORD.QTY = LD(4)*QSIGN
IF TYPE ='OQTY.PER' THEN
**%* convert the UOM qty.
MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD ="
IF PRD(15) # " THEN
UMTBL = PRD(15)
END ELSE
READV UMTBL FROM PLNEFILE,PRD(9),3 ELSE UMTBL ="

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 187

&

ACTIVANT

END
1Q. TO.ALPHA UMTBL,PRD(7),LD(23),0RD.QTY,,,,,ALPHA
ORD.QTY = TRIM(ALPHA)
END
VAL<1,LDN>= ORD.QTY
CASE OTHERWISE
VAL<1,LDN>="*
END CASE
CASETYPE ='CT'
BEGIN CASE
CASE NUM(PN)
VAL<I,LDN>=1
CASE OTHERWISE
VAL<I,LDN>=0
END CASE
CASE TYPE[1,4] = 'DESC'
IF NUM(PN) THEN
READV DESC FROM PRDFILE,PN,1 ELSE DESC = "* Not Found *'
END ELSE DESC ="
IF LD(3)#" THEN DESC<1,-1> = LD(3)
SVCHK = TYPEJ[5,99]
IF TRIM(SVCHK) =" OR NOT(NUM(SVCHK)) THEN
VAL<1,LDN>=LOWER(DESC)
END ELSE
VAL<1,LDN> = DESC<1,SVCHK>
END
CASE TYPE[1,4] ="'ENT#
IF NUM(PN) THEN
FOUND =NO
CMT.CT = DCOUNT(LD(3)<1>,VM)
FORIJT=1TO CMT.CT
IF OCONV(LD(3)<1,JT>"MCU")[1,6] ='"YOUR # THEN
VAL<1,LDN> = TRIM(FIELD(LD(3)<1,JT>,'#,2))
FOUND = YES
EXIT
END
NEXT JT
IF NOT(FOUND) THEN
OE.CUS.PN.CMT.GET LED(1)<1,GEN>,LED(5)<1,GEN>,,PN,CMT
VAL<1,LDN>=CMT<1,1,1>
END
END
CASE TYPE ="PRCLN'
IF NUM(PN) THEN
READYV PRCLN FROM PRDFILE,PN,9 ELSE PRCLN = "* Not Found *'
END ELSE PRCLN ="
VAL<1,LDN>=PRCLN

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 188

&

ACTIVANT

CASE TYPE ="'PRCEXT'
SQTY = (SUM(LD(5)<1,GEN>)+SUM(LD(6)<1,GEN>))*QSIGN
VAL<1,LDN> = ICONV(OCONV(LD(8)<I,GEN>MR9")*SQTY,'MR2")
CASE TYPE ="UNIT"
VAL<1,LDN> = ICONV(OCONV(LD(8)<1,GEN>'MRY"), MR3")
CASE TYPE ='CSTEXT
SQTY = (SUM(LD(5)<1,GEN>)+SUM(LD(6)<1,GEN>))*QSIGN
VAL<I,LDN>=ICONV(OCONV(LD(10)<1,GEN>'MR9")*SQTY,'MR2")
CASE TYPE ="'COMEXT'
SQTY = (SUM(LD(5)<1,GEN>)+SUM(LD(6)<1,GEN>))*QSIGN
VAL<1,LDN> = ICONV(OCONV(LD(27)<1,GEN>,MR9")*SQTY,'MR2")
CASE TYPE ='TYPE'
VAL<1,LDN> = FIELD(LD(7)<1,GEN>,"~',1)
CASE TYPE ='TAG' OR TYPE ='TAGDT'
LOCA = FIELD(LD(7)<1,GEN>,"~'",2)
TAG =FIELD(LOCA,",2)
TAG =FIELD(TAG,".",1)
LOCATE TAG IN VAL<1> BY "AL" SETTING TLOC ELSE
VAL = INSERT(VAL,1,TLOC;TAG)
END
CASE TYPE[1,6] ='ONHAND'
STK.BR = LED(2)<1,GEN,2>
IF NUM(PN) THEN
PRDD.BR.GET.REC STK.BR,PN,REC
GET.ONHAND REC<I1>REC<8>,STK.OH
IF TYPE ='ONHAND.PER' THEN
**% convert the UOM qty.
MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD ="
MATREAD PLNE FROM PLNEFILE,PRD(9) ELSE MAT PLNE ="
DFLT.PER.GET 'T',PER,ALPHA
IF PRD(15) #" THEN
UMTBL = PRD(15)
END ELSE
UMTBL = PLNE(3)
END
1Q.TO.ALPHA UMTBL,PRD(7),ALPHA,STK.OH,,,,,ALPHA
STK.OH = TRIM(ALPHA)
END
END ELSE
STK.OH=0
END
VAL<I,LDN> = STK.OH
CASE TYPE = "PN.STK.FLAG' ;* stock flag
*#% for stock branch only
STK.BR = LED(2)<1,GEN,2>
STK.FLAG ="
IF NUM(PN) THEN

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 189

&

ACTIVANT

GET.PRD.BR.VAL STK.BR,PN,12,STK.FLAG
IF STK.FLAG ='1' THEN STK.FLAG ='Y' ELSE
IF STK.FLAG='0' THEN STK.FLAG='N' ELSE STK.FLAG="-'

END
END
VAL<1,LDN>=STK.FLAG
CASE TYPE = 'PN.BUY.ID' ;* buyer's ID

for stock branch only
STK.BR = LED(2)<1,GEN,2>
BUY.ID ="
IF NUM(PN) THEN
READV BLINE FROM PRDFILE,PN,12 THEN
BUYLINE.BR.GET.VAL STK.BR,BLINE,17,BUY.ID
END
END
VAL<1,LDN>=BUY.ID
CASE TYPE[1,4] ='ONPO'
IF NUM(PN) THEN
for stock branch only
STK.BR =LED(2)<1,GEN,2>
IF TYPE ="'ONPO.DT' THEN ;* ONPO
*** for TYPE = 'ONPO.DT'
ONPO.DT = 99999
END ELSE
**% for TYPE ='ONPO' or 'ONPO.PER'
MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD ="
MATREAD PLNE FROM PLNEFILE,PRD(9) ELSE MAT PLNE ="
ONPO =0
END
PRDD.BR.GET STK.BR,PN
TRS =PRDD.BR(2)
TRN =DCOUNT(TRS,VM)
FOR TRX=1 TO TRN
IF FIELD(TRS<1,TRX>,'~',3)[1,1]="P' THEN
IF TYPE ='ONPO.DT' THEN
**% get the receiving date
PO.DT = FIELD(TRS<1,TRX>,~',2)
*#% set ONPO.DT to the latest date
IF ONPO.DT > PO.DT THEN ONPO.DT = PO.DT
END ELSE
*#% get the QTY
ONPO += PRDD.BR(3)<1,TRX>
END
END
NEXT TRX
IF TYPE ='ONPO.DT' THEN
[F ONPO.DT = 99999 THEN ONPO.DT ="

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 190

&

ACTIVANT

VAL<1,LDN>= ONPO.DT
END ELSE
IF TYPE ='ONPO.PER' THEN
*** convert the UOM qty.
DFLT.PER.GET 'P',PER,ALPHA
IF PRD(15) #" THEN
UMTBL = PRD(15)
END ELSE
UMTBL = PLNE(3)
END
IQ. TO.ALPHA UMTBL,PRD(7),ALPHA,ONPO,,,,,ALPHA
ONPO = TRIM(ALPHA)
END
VAL<1,LDN>= ONPO
END
END ELSE
VAL<1,LDN>="
END
CASE TYPE[1,7] ='ON.XFER' ;* on transter
*#% for stock branch only
STK.BR = LED(2)<1,GEN,2>
ONPO =0
IF NUM(PN) THEN
INV.GET.TOTALS
PN,STK.BR,STK.OH,TAG.OH,STK.CMTD,TAG.CMTD,STK.PO,TAG.PO,STK.XFER,TAG.
XFER,OTHER,ON.BID,STK.INPR,TAG.INPR
ONPO += STK.XFER
END
IF TYPE ='ON.XFER.PER' THEN
#% convert the UOM qty.
MATREAD PRD FROM PRDFILE,PN ELSE MAT PRD ="
MATREAD PLNE FROM PLNEFILE,PRD(9) ELSE MAT PLNE ="
DFLT.PER.GET 'T',PER,ALPHA
IF PRD(15) #" THEN
UMTBL = PRD(15)
END ELSE
UMTBL = PLNE(3)
END
IQ. TO.ALPHA UMTBL,PRD(7),ALPHA,ONPO,,,,,ALPHA
ONPO = TRIM(ALPHA)
END
VAL<1,LDN>= ONPO
END CASE

NEXT LDN

IF TYPE ='TAGDT' THEN

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 191

&

ACTIVANT

TAG.CT = DCOUNT(VAL,VM)
FOR TAG.ID=1TO TAG.CT
TAG = VAL<1,TAG.ID>
READYV SHIP.DT FROM LEDFILE,TAG,9 ELSE SHIP.DT="
SHIP.DT = SHIP.DT<1,1>
VAL<1,TAG.ID>= SHIP.DT
NEXT TAG.ID
END
CASE ATTBJ[1,3]="TV.'
TYPE=ATTB[4,99]
BEGIN CASE
CASE TYPE ='PN'
IF NUM(PN) THEN
VAL<],LDN>=PN
END ELSE VAL<],LDN>="
CASE TYPE ='NAME'
READV CN FROM LEDFILE,OID,5 ELSE CN="
CN = CN<1,GEN>
READYV VAL FROM CUSFILE,CN,1 ELSE VAL="
CASE TYPE ='BFLW.DT'
VAL="
READ REC FROM LEDLFILE,OID ELSE REC="
DTS=DCOUNT(REC<11>,VM)
FOR DTCT =1 TO DTS
IF REC<11,DTCT> GT 0 THEN
VAL<1,-1>=REC<11,DTCT>
END
NEXT DTCT
END CASE
END CASE
RETURN

DICT.GET.LEDGER.VALUE

SUBROUTINE (VAL,ATTB)

This dictionary works from the PSUB, LEDGER, AR or the ORDER.QUEUE file. Specify the
attribute number from the LEDGER file that you want to pass back. The attribute can also be a
code to pull back different information.

LI.PN will pull back the Line Item Part number.

LI.SQTY will pull back the line item ship quantity

LI.SQTY.PER will pull back the uom for the ship quantity.

LI.OQTY pulls back the line item open quantity

LI.OQTY.PER pulls back the uom for the open quantity.

LI.DESC pulls back the description of the line item.

LILLENT# pulls back the customer part number (if customers are assigned part numbers in
the customer/vendor part number screen)

LI.PRCLN pulls back the price line for the item on the order.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 192

&

ACTIVANT

LI.PRCEXT pulls back the extended price for the item on the order

LI.UNIT pulls back the unit price for the item on the order

LI.CSTEXT pulls back the extended cost of the item

LI.COMEXT pulls back the unit cost of the item

LL.TYPE pulls back the sales quantity type such as tag, defective, etc.
LI.ONHAND pulls back the product’s on-hand quantity.

LI.ONHAND.PER will display the unit of measure for the on-hand quantity.
LI.PN.STK.FLAG displays the branches stk flag from the Primary inventory
maintenance screen. (-=“";1=Y ;0=N)

LI.PN.BUY.ID displays the user id of the buyer for the items on the transaction
LI.ONPO displays quantity on a purchase order for the line item..

LI.ONPO.DT displays the expected receiving date of the purchase order
LI.ONPO.PER displays the unit of measure for the quantity on order from the po.
LI.ON.XFER displays the quantity on a transfer.

LI.ON.XFER.PER displays the unit of measure for the quantity on transfer
LI.TAGDT displays the date the tagged purchase order or transfer is expected to be
received in.

TV.NAME pulls back the full name of the writer of the transaction

e TV.BFLW.DT pulls back the bid follow-up date for the transaction.

Exercise:

Create a dictionary item using the DICT.GET.LEDGER.VALUE subroutine with the
knowledge you just learned.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 193

&

ACTIVANT

Subroutine Dictionary Examples

The following are some sampling of dictionary items that you will not have in your
eclipse application. Let’s review the dictionaries and the subroutines being used together.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : OPEN.ORD.QTY

=SUBR{ DICT.PRD.OPEN.ORD ", LD&")

Dest | [ind Subr | Bdit Subr | Bet Common

The above dictionary will display the order quantity on each open order that displays for a
product. This dictionary will simply list the open order quantity amounts for each order. This
dictionary will not do math with other columns on a report writer report because it is a vertical
listing of quantities not a sum of all of the quantities. Please see next dictionary item.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : SUM.OPEN.ORD.QTY

SUM(-SUBR{’DICT.PRD.OPEN.ORD", 'LD&"))

Oest | [Find Subr | Edit Subr | et Common

The above dictionary item adds all of the open order quantities and provides a summary total.
This dictionary can then be used to do math on other columns on a report writer.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 194

&

ACTIVANT

I-Descriptor Program Maintenance

File Name : ENTITY.PN.IDS
Dict ID : LH.OPEN.PO

SUBR("DICT.PRD.OPEN.PO™,1,PN)

Oest | Bind Subr | [Edit Subr | Bet Common

The above dictionary item will display open purchase orders for the PN associated with the
Customer Specific/Vendor Specific part number screen.

I-Descriptor Program Maintenance

File Name : ENTITY.PN.IDS
Dict ID : SALES

SUBR("DICT.PRD.CUS.SALES",1,3, ", " ,PN,CUST.ID)

Dest | [ind Subr | Edit Subr | Bet Common

The above dictionary is used on the ENTITY.PN.IDS file which is where your customer/vendor
part numbers are stored. This subroutine will allow you to pass in the eclipse product id and the
customer id so that you can return a sales$ amount for the customer and product from this file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 195

&

ACTIVANT
DICT.BR.VAL.GET
SUBROUTINE (VAL,BR,PN,ATTB.NO,SVM.NO,LOC.FLAG)
Subroutine: DICT.BR.VAL.GET

This routine pulls branch specific data from the PROD.BR file or the PROD.CALC.BR file
calling either PRD.BR.GET.VAL or PRDC.BR.GET.VAL to get a specific attribute for a
branch. If no branch is specified then all branches are used.

BR - Branch [IN]

PN - Part Number [IN]

ATTB.NO - Attribute Position [IN]

SVM.NO - Sub-Value Mark [IN]

LOC.FLAG - Flag to set whether to pull from PROD.CALC or PROD.BR [IN]
VAL - Value Returned [OUT]
DICT.CALC.CN.SLS

This subroutine requires 6 arguments to be entered for it to work.
SUBROUTINE (AMT,RANGE,AVN,BRCHS,SD,ED,CN)
** Version# 2 - 05/24/1996 - 02:55pm - STEELI - develop
R Date Ranges
* 1 = User Defined Date Range
* 2 = MTD Date Range
* 3 = YTD Date Range
* 4 = Fiscal MTD Date Range
* 5 =Fiscal YTD Date Range

--------- AVN Definition
1 = Sales
2 = Gross Profit

* %

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 196

&

ACTIVANT
DICT.AR.LEDL.INFO

This subroutine is used from the AR file. The two requirements when using this
subroutine in an [-descriptor is to pass in the @ID and the word the system needs to find
in the change log for the transaction.

The system will return the user, date, time, port and change log as shown below.
S0704030.001

DAVIDB 03/21/00 02:51pm /pts/4 DAVIDB Authorized : Overcommitted

An example of an I-Descriptor using this subroutine is:

File Name : AR
DictID :LEDL.OVER

SUBR('DICT.AR.LEDL.INFO',@ID,'Overcommit')

DICT.PRD.AVG.PRC
SUBROUTINE (AVG.PRC)
*#% SUBROUTINE - DICT.PRD.AVR.PRC

*

This routine calculates the Average Selling Price for the Product whose PN is @ID based on
the Branches, Start Date and End Date specified through SET.COMMON at TCL.

*

*#% AVG.PRC (OUT) - The Average Selling Prices (VM by Branch)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 197

&

ACTIVANT
DICT.PRD.CUS.ORDERS

SUBROUTINE (ORDATA,VAL,PN,CN)

sk sk sk sk sk ke sk sk sk sk sk s ke sk sk sk sk sk sk sk sk sk sk sk s ke sk sk sk skeoske sk sk skeosk skoskoskok sk
* VAL =1 ; Open Order ID's *

* VAL =2 ; Required Date *

* VAL = 3 ; Qty pending shipment *

* VAL =4 ; First line of product desc *

* VAL =5 ; Ship Date

**

If you can pass in the @Id of the product file and the @id of the customer, you can return any of
the above value numbers.

DICT.PRD.GET.INFO
SUBROUTINE (VAL,OPT, TYPE)
Works from the PRODUCT file.
The options you can choose are:
LP = Line Point

OP = Order Point

XFER.PT = Transfer Point
DMD = Demand

The different types can be:
WBRS = Warehouse branch
PBRS = Purchasing Branch

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 198

&

ACTIVANT
DICT.PSUB.LEDL.INFO

SUBROUTINE (VAL,PSUB.ID,WORD)
This routine will go out to the Ledger log and pull back occurrences you specify. You must
enter the word to search on.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 199

&

ACTIVANT

Appendix A
Answers to I-Descriptor Exercises

ntut Eclipse”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 200

Lesson 12

Exercise 12.1

&

ACTIVANT

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : ND.ADDR

FIELD{@RECORD<2>," ",2)

Exercise 12.2

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : ND.KEYHORD

FIELD{@RECORD<4,2>," " ,3)

Lesson 13

Exercise 13.1

I-Descriptor Program Maintenance
File Hame :

AR
Dict ID : JH.CUS.SLSH

TRANS({ 'ENTITY' ,EM,41,°K")

TRANS(ENTITY' ,@RECORD<10>,41, 'X")
TRANS({ 'ENTITY' ,STEMN,41,'K")

TRANS({ 'ENTITY' ,@RECORD<15>,41, K")

llest | Find Subr | Edit Subr | Bet Common

The above answer could be any of the expressions shown above.

Exercise 13.2

I-Descriptor Program Maintenance
File Mame : AR
Dict ID : ND.WRITER

ERHNS("LEDGER",URDERH,?S,’H’]

Release 8 UniVerse Data Structures with Report Writer and Mass Load

Page 201

&

Lesson 14

ACTIVANT
Exercise 13.3
I-Descriptor Program Maintenance
File Name : PSUB
Dict ID : ND.WEIGHT
TRANS (" PRODUCT ,FIELD(@ID, ™’ ,1},18, X")
Exercise 13.4
I-Descriptor Program Maintenance
File Name : ORDER.QUEUE
Dict ID : ND.SHIPTO.FAX
TRANS{ ENTITY ,@RECORD<8>,17, K)<1,1,2>
Exercise 13.5
I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : ND.BUYER .NAME
ORANS{ 'BUY.LINE' ,@RECORD<12>,17, ¥’);
@1(TRANS{ INITIALS ,@1,3,'X’})
OR it could have been:
I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : JH.BUYER.NAME
TRANS{ INITIALS' ,TRANS{ BUY.LINE' ,BUY.LINE,17,’H'), 3", K"}
Exercise 14.1
I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : ND.TOTAL.CURRENT
BAL . CURRENT+BAL . FUTURE+BAL . DEPOSITS
Exercise 14.2
I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : ND.ST.NSK.LINE
IF STATUS = "1" THEM LINE ELSE STATUS = "2" THEN BUY.LINE ELSE ™"
Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 202

Exercise 14.3

(Col
1

2
I
fi=
5*
6

7
8

Title

Design ID : HD.INV.VAL
File Hame : PRODUCT
: Inventory Value and Difference Between costs

—Dict Ttem/Formula
VIEWER.ID

DESCR

PREY . ONHAND

BASIS

BASIS

Jxh

=5

h—5

|

10 |Onhand

12 |Rep-Cost
12 |Avg-Cost
12 [Ext Rep
12 [Ext Avg
12 |Difference

Width Column Heading

35 |Description

&

ACTIVANT

Report Writer/Mass Load Design

Created : 01/03/02 By :

Total Width : 119

BriT

T

EEEE=E===E=
LSS -CC % KO

Belect Build | Adv Sel

ectlion | EBclipse Dict

Bolumn Data

Nicole Dursi K120

—Format—

MRO
MR3
MR3
MR3
MR3
MR3

9 of 9 =
Copl] | Mel | Hdg

Bun Report | Dict SUmm

Mabels | [pts

Hotes

Miew

Begin Load

Set VL

Exercise 14.4

Dict ID

File Name : PRODUCT
: JH.HEADER.DATA

1-Descriptor Program Maintenance

_Desc:

":DESC1:@YM: 'Price Line:
"KEY1:@YM: "Height:

“:LINE:’
" :UNIT.WEIGHT

Buy

Line:

":BUY.LINE:@YH: Keys:

This answer could be anything you want. Your carriage returns could be anywhere.

Exercise 14.5

File Hame : ENTITY
Dict ID : SCOTT

I-Descriptor Program Maintenance

Release 8

DCOUNT(TRIM(NAME),™ ");FIELD(NAME,™ " ,@1)

UniVerse Data Structures with Report Writer and Mass Load

Page 203

&

ACTIVANT

Appendix B
File Layouts for Release 7

ntut Eclipse”

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 204

Entity File Layout
Field # Field Name:

1 NAME

2 ADDRESS

3 CITY

4 STATE

5 ZIP

6 COUNTRY

7 ENTITY.TYPE

8 SORTBY

9 INDEX

10 BILL.TO

11 PAY.TO

12 SHIP.FROMS

13 CLASS

14 SHIP.TOS

15 EDLIDS

16 CONTACTS

17 PHONES

18 OE.MESSAGE

19 OE.TRIGGERS

21 VALID.WIP.IDS

22 CR.LIMIT

22 PAST.DUE.DAYS

23 CREDIT

24 AUTH.BRCHS

26 OVERRIDE.TERMS

27 AUTH.REQD

28 CUST.TERMS

29 AUTH.NAMES

30 AMT.ALLOWED

31 COD.PAY

32 TAX.EXP.GRPS

33 TAX.STATE.CODE

34 TAX.EXP#

35 TYPE

36 TAX.JUR.OVRD

37 APPLY.CR

38 USE.DFLT.BT.CR

39 FGHT.IN.EXEMPT

39 FGHT.OUT.EXEMPT

40 SEP.ARFR.BT

41 SALESMAN
Release 8

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

Just/Width Field Description

L#35
L#35
L#20
L#5
R#11
L#10
L#1
L#11
L#35
R#6
L#6
R#6
L#4
R#5
L#25
L#30
L#17
L#10
L#10
L#16
R#14
L#14
R#9
L#3
R#1
R#1
L#12
L#25
R#12
L#1
L#10
L#2
L#20
L#12
L#10
R#1
R#1
L#1
L#1
L#12
L#20

Entity Name

Entity Address (Multi Valued)

City

State

Zip Code

Country

Entity Type MV by position

Sorts entity file

Index

For "Job/Ship-to" entity (Customer)

Pay To (for ship-froms) (Vendor)

List of Ship-Froms for "Pay-To" entity (Vendor)
Customer Class

List of Ship-Tos For "Bill-To" entity (Customer)
EDI Information

Contacts for this Entity

6 Phone numbers - aligh w/contacts
Order Entry Message

User Defined Order Entry Triggers

Work In Process (Processes)

Customer credit limit

PAST.DUE.DAYS

Credit Specifications

Branches Cus/Vendor has access to

Ovrd Inv Terms Code for Svc Chg
Authorized personnel only (1=Y)

Customer Payment Terms

Auth names to place sales orders

Max order amt for auth personnel

Accept Checks? (Company/Personal)

Tax Exception Groups

Stores Customer State Tax Code

Tax Exempt Number (Line up with state)
Customer Pricing Type / Vendor Type
Tax Jurisdiction Override

Apply credits to oldest buckets (Y=1)

1=Use Dflt 2=Use Bill-to (Credit information)
Entity is Exempt from incoming freight charges
Customer is Exempt from outgoing freight charges
Separate AR from Bill-To

Salesperson Name (Outside)

Page 205

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

Release 8

PRICE.STYLE
BO.ACTION.CUS
SALESMAN.IN
PO#.REQ
SHIP.VIA
CREDIT.STATS
START.DATE
USER.DEFINED
INV.COPY.CNT
SEL.CODE
SHIP.INST.DFLT
HOME.BR
HOME.TERR
EXP.DIST.CODE
EXP.ACCT#
EXP.PERC
VEN.TERMS
FRT.ALLOWED
OVR.SHORT%
OVR.SHORT$
BO.ACTION.VEN
STMT.TYPE
STMT
DELETE.FLAG
ALT.CUST
REBATE.DATA
REMOTE.DATA
PRC.LINES
INIT.STAT.OVRD
SLS.SRC.OVRD
SHIP.BR.OVRD
PRT.KIT.COMPS
REQ.LT
MAX.EARLY.SHIP
SIC.CODE
CUS.SEL.CODE
AUTO.DOC.ID
PARENT.ID
RANK

PNT.DATA
SINGLE.INV.FLAG
MAX.COLLECT.DAYS
CONTRACT.PRC.IDS
UET.DATA
NORMAL.DEL.TIME
D&B#

CERTIFICATION.DATE

CURR.TYPE

UniVerse Data Structures with Report Writer and Mass Load

L#10
L#1
L#10
L#1
L#25
R#10
R#10
L#10
R#5
L#20
L#38
R#5
L#10
L#10
L#10
R#5
L#20
L#2
R#12
R#12
L#10
L#1
L#1
L#1
L#8
L#10
L#10
L#10
L#1
L#10
R#3
L#1
R#3
R#3
L#10
L#35
L#30
R#9
L#1
L#20
R#1
R#5
L#10
L#10
R#7
L#20
L#30
L#9

&

ACTIVANT
Pricing Print Style for Sales Orders
Backorder Status (C,H,A,L,X)
Salesperson Name (Inside)
PO# or Job Name req'd? - P,R,B=both
Default Ship Via code; See SHIP-VIA
Payment Days, Hi AR, Avg AR - multi-valued
Start Date (Create Date)
User Defined
of Invoice copies
Customer Pricing Selection Code
Default Shipping Instructions
Home Branch
Home Territory
Expense Distribution Codes
Expense Account#
Expense Distribution Percentages
A/P Terms (Vendor)
Vendor Frt Allowed (Y/N)
Maximum% for A/P shipment
Maximum$ amt for A/P shipment
Vendor Backorder
alance Fwd/<O>pen Item Statement
Print Batch Statement Y/N
Delete Flag
Alternate Customer/Vendor (entity-specific) Part #
Rebate Product IDs and Price Line
Remote OE Data
Price Lines
Initial Status Override
Sales Source Override
Shipping Branch Override
Print Kit Components? (Y/N)
Req'd Date Leadtime
Maximum Early Ship Days
SIC Code
User Defined Customer Select Code
Auto Document Printing ID
Parent Statement Customer ID
Customer Ranks
Points Data
Single Invoice Flag (Y=1)
Maximum Collection Days
Contract Pricing IDs
UET Data
Normal Time
D&B#
Certification Information
Primary Currency Type (Blank=System default)

Page 206

91
92
93
94
95
96
97
99
100
101
102
102
103
104
105
106
107
108
109

Release 8

ALT.BT.NAME
ALT.BT.ADDR
ALT.BT.CITY
ALT.BT.ST
ALT.BT.ZIP
ALT.BT.SORT
ALT.BT.USE.ST
WOE.FORMS
UBAP.OVRD
CREDIT.CARD
1099.1D
VALID.POS
FRGHT.DAYS
SUBS
TAX.EXEMPT.CODES
LINE.ITEM.TAX
ACL.USERS
ACL.VONLY
QUAL.LVL

UniVerse Data Structures with Report Writer and Mass Load

L#15
L#20
L#11
L#3
L#10
L#12
R#2
L#25
L#9
L#30
L#15
L#15
R#3
L#3
L#16
L#1
L#8
L#1
L#2

&

ACTIVANT
Alternate Bill-To Name
Alternate Bill-to Address
Alternate Bill-To City
Alternate Bill-To State
Alternate Bill-To Zip code
Alternate Bill-To Sortby
Alternate Bill-To - Use Ship-To Flag
WOE Custom Forms
UBAP Ovrd GL # (Vendor Add'l screen)
Credit Card Default Info (Customer)
1099 Tax ID (Vendor)
Valid PO List (Customer)
Freight Days (Vendor)
Restrict Substitutes? (Customer)
Tax Exempt Codes (Line up W/ exempt #'s)
Line Item Tax (""=Disabled; 1=Always prompt; 2=Not)
Access Control List - Users
Access Control List - View Only
Acceptable Quality Controls

Page 207

Product Dynam File Layout

Field # Field Name

Release 8

ONHAND

ID
STOCK.QTY
REVIEW.QTY

BID.ID
BID.QTY
UPD.GEN

LOCATION
CTRL.TYPE
LANDED.COST

AVG.COST

LAST.COST
LOC.STAT
AVAIL.CACHE.ID
AVAIL.CACHE.QTY
LOC.MIN

LOC.MAX
LOC.LAST.CNT
LOC.SORTBY
AVG.LANDED.COST
LOC.PICK.PRI
SER.NUMS
SER.QTYS
SER.LOCS
FRZ.AVG.COST
FRZ.LAST.COST
FRZ.DATE
LOC.PICK.STATUS
LOC.PICK.LOCN
PREPACK.QTYS

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

Just/Width Field Description

R#10

L#40
R#10
R#10

L#25
R#10
R#

L#10
L#1
R#12

R#10

R#10
L#1
L#10
R#6
R#6
R#6
R#8
L#8
L#15
R#2
L#20
R#8
L#20
R#12
R#12
R#10
L#15
L#12
R#12

On Hand
ddddd~i~nnnnnnnn : ddddd=date; i=<D; (sales & purch
transactions)

STOCK.QTY (related to field 2)

REVIEW.QTY (related to field 2)

ddddd~i~nnnnnnnn : ddddd=date; i=<Doc initial>;
nnnnnnnn=LDI

BID.QTY

Generation# of this record. Must be incremented every time r

Bin & Aisle Location for stock qty in Attb#1 (VM) by Brch
Loc Ctrl Type
Landed Last Cost

Average Cost

Last Cost received
Location Status

AVAIL CACHE ID
AVAIL CACHE QTY
Location Min Qty
Location Max Qty

Last Count

Location Sortby
AVG.LANDED.COST
Pick Priority

SER.NUMS

Open Serial Qtys

Serial Number Locations
FRZ.AVG.COST
FRZ.LAST.COST
FRZ.DATE
LOC.PICK.STATUS
LOC.PICK.LOCN
Pre-Package Qty (By Br By Locations)

Page 208

Product File Layout

Field # Field Name

23
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
39
40

Release 8

DESC
GL.TYPE
STATUS
KEYWORDS
PRICE.AS
SHEET
UOM.QTY
INDEX.TYPE
LINE
UNIT.WEIGHT
FORECAST.PARAMS
BUY.LINE
LOAD.FACTOR
COMM.CODE
PN.UMS
DFLT.UMS
BLANK2
PROCURE.GRP
SELECT.CODE
SORT.CODE
RANK
TAX.EX

TAX.EX.CODE
MIN.SELL.QTY
CREATE.DATA
MIN

MAX
LAST.DEMAND.CALC
SALES.HITS
DEMAND.DAY
LEADTIME
LOW.SALE
E.O.Q.

BUYPKG

TREND
SERVICE.STOCK
LOST.SLS.CTRL
BO.TOL.QTY
EXCP.SLS.%
EOQ%

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

Just/Width Field Description

L#35
L#8
R#6
L#20
L#10
L#4
L#7
L#1
L#8
R#10
L#15
L#8
R#10
L#20
L#15
L#8
L#6
L#10
L#25
R#9
L#12
L#10

L#2
R#3
L#15
R#6
R#6
R#10
R#5
R#10
R#3
R#5
L#6

R#6
R#3
R#5
R#4
R#6
R#5
R#2

Description

General Ledger Product Type

Product Status ; 1=stock, 2=non-stock
Keywords

Product ID of Master Price Item

Branch Price Sheet ID

Unit of Measure Quantity

Index Type: P = Primary; C = Catalog

Price Line

Unit Weight (Ibs or kgs) (MR4)

Product Level Forecast parameters (Min Hits...)
BUY .LINE

Load Factor (MR4)

Commodity Code

Product Level Unit of Measures.

Default Units of Measure

Not Yet Used

Procurement Group

Product Select Code

Sort Code

Product Rank

Name of Product Exception Groups -- Hot Key X
Tax Exception Code: 1=reduced; 2=always full;
3=always reduced

Sell Package Quantity - selling multiple
Product Creation Info such as Date; User etc
Minimum (Non Forecasted)

Maximum (Non Forecasted)

Last Date Demand was Calculated; By Branch
of Sales Transactions Per Year

Demand in Units Per Day

Lead Time in Days

Low Sale Quantity

E.O.Q.

Buy Package Quantity - used for rounding up in
Purchasing

Trend % for Forecasted Demand.

Service Stock

Lost Sales Control%

Forecasting Will Exclude Sales >= to this Value
Exception Sales Control %

Carrying Cost Percent to Use in EOQ Formula

Page 209

41
42

43
44
45
46
47
48
49

50
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Release 8

EOQ$
BLANK3

STOCK
DEMAND.PERIOD
RAW.HITS
RAW.DEMAND
DAYS.OUT
BR.LS.MULT
HIL.TRANS

EXCP.QTY.EXCLUDED
TREND.FACTOR
SAFETY.FACTOR
COMP.QTYS
COMP.PNS
COMPONENT.OF KIT
SUBSTITUTES
SUBS.BRS
SUBS.NOTES
DONT.FORGET.MSG
SEASONAL
ADD.DMD.BASE
BR.MM.EXP
LEAD.FACTOR
UPC#

ADD.DMD
BR.LABEL.PER
ALT.DESC
MERGE.PN
PASS.DISC
FREIGHT

NO.PRINT

DISC.CLASS
BUY.GRP
SELL.GRP
SER#
COMM.GRPS
QTY.BRK
QB.UM
PKG.DIV
CALC.DMD
HAZARD.DATA
BR.HITS
NET.HITS
CW.TYPE
FREIGHT.FACTOR
COMP.CMTS

UniVerse Data Structures with Report Writer and Mass Load

R#4
L#6

L#1

R#3
R#6
R#6
R#8
R#5
R#6

R#15
R#12
R#3
R#5
L#10
R#6
R#6
R#3
L#30
L#35
R#1
L#1
R#10
R#3
L#20
R#5
R#5
L#35
L#10
R#5
R#12
L#1

L#3
L#12
L#12
R#1
L#20
R#5
L#2
L#1
R#1
L#30
R#4
R#4
L#1
R#10
L#35

&

ACTIVANT
Reorder Cost Per Line ltem to Use in EOQ Form
Not Yet Used
The STK Field in the Inventory Maintenance Sub
by Branch
of Days Used to Forecast Demand
Raw Hits in Forecast Period
Total Quantity Sold Over Demand Period
Days Out of Stock
Lost Sales Multiplier Actually Used; 1.00=No
Quantity of Largest Transaction
Largest Sale Within Forecast Period That is
excluded
Trend Factor Used
Manual Safety Factor
Multi-Value List of Components Quantities
Multi-Value List of Component ID Numbers
Internal ID#s of Kits this product is part of
List of Substitutes
Branch Listings Where Subs in Attr#55 Are
Notes Pertaining to Multi-Valued Substitutes
Remind Hot Key in Product File
Seasonal Flag Y or N
Add demand of other product basis U=Units
Min/Max Expiration Date
The # of Receipts Looked at Going Back from
UPC# & user defined upc#s - 5 multi-values
IDs of Other Products Whose Demand is Being
Label per Quantity
Alternate Description for product
Keeper Product this item was merged
Pass-along Discount.
Freight Charge by Branch
Price Book No Print Flag. Located Alt-P to Alt-R
Price Sheet Discount Class; For Use in Price Sheet
Maint
Buy Group for Buy Matrix
Sell Group for Selling Matrix
Serial # 'I'nbound, 'O'utbound, 'A'uto, 'N'one
Commission Groups
Price Break Quantities Fields -- Multi-Valued
Quantity Break Unit of Measure
Package Divisible: Null or Y.
If Y, Use Calc Demand for Purchasing
Hazard Data
Branch Hits
Network Hits
Central Whse Type T=Top Down; B=Bottom Up
Cost Freight Factor
Kit Components Comments

Page 210

&

ACTIVANT
86 KIT.OPTS L#1 Kit Options
87 COMP.SPOIL R#6 Component of Kit Spoil %
88 POINTS.DATA R#20 Points Data
89 UET.DATA L#20 Unquality Event Parameter Control
90 STOCK.TEM L#1 Stock Item
91 CERT.REQ L#11 Cust Certification Required to Buy
92 BUDGET.GRP L#15 Budget Group
93 XREF.DATA L#40 Cross Reference data for HTML connection.
94 CUST.SERV.STOCK L#15 Product Inventory for Customer Service Stock
95 SUBS.TYPE L#5 Substitute product types
96 SUBS.SUG.QTY L#8 Substitute Suggested Sell Qty
98 TEMP.NEW.LOC L#12 TEMP.NEW.LOC - you may trash this after 2-1-98
99 MIN.LEAD.FACTOR R#2 Minimum Lead Factor
Product Price File Layout
Field # Field Name Just/Width Field Description

1 LIST-PER R#4 Quantity of selling basis units

2 PER.UM L#2 Description of price per unit; EA,C,M

3 PER.QTY R#8 Price Per Qty related to 2; 1,100,1000

11 BASIS-1 R#10 Usually LIST PRICE

12 BASIS-2 R#10 Selling Basis -- By Effective Date (Value)

13 BASIS-3 R#10 Selling Basis -- By Effective Date (Value)

14 BASIS-4 R#10 Selling Basis -- By Effective Date (Value)

15 BASIS-5 R#10 Selling Basis -- By Effective Date (Value)

16 BASIS-6 R#10 Usually Replacement Cost

17 BASIS-7 R#10 Usually Standard/Market Cost

18 BASIS-8 R#10 Selling Basis -- By Effective Date (Value)

19 BASIS-9 R#10 Selling Basis -- By Effective Date (Value)

20 BASIS-10 R#10 Selling Basis -- By Effective Date (Value)

21 BASIS-11 R#10 Selling Basis -- By Effective Date (Value)

22 BASIS-12 R#10 Selling Basis -- By Effective Date (Value)

30 BASIS-20 R#10 Selling Basis -- By Effective Date (Value)

Searching for a Dictionary Item using TCL

In TCL you can use the SEARCH command to find a dictionary item. The following
example returns a list of dictionary items in the AR file that use the TRANS command.
You can also do the same search for the string FIELD.

:SEARCH _DICT AR
STRING: TRANS
STRING:

54 record{s) selected to SELECT list H#0.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 211

&

ACTIVANT

Appendix C
File Layouts for Release 8§

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 212

Entity File Layout Release 8

ENTITY file Dictionary ltems

Dictionary ID............
@ID

CUST_ID
VEND_ID

NAME

ADDRESS
ADDRESS?2

CITY

STATE

ZIP_CODE
COUNTRY
ENTITY_TYPE
IS_BILL_TO
IS_SHIP_TO
IS_BR_ENTITY
IS_PAY_TO
IS_SHIP_FROM
IS_.BR_ACCOUNT

IS_FREIGHT_VENDOR

IS_PROSPECT
IS_MFR
SORT_BY

INDEX

BILL_TO

PAY_TO
SHIP_FROMS
CLASS

SHIP_TOS

EDI_ID
CONTACTS
PHONE_NBRS
OE_MESSAGES
OE_TRIGGERS
ORDER_LIMIT
WIP_DATA
WIP_DAYS
WIP_IDS
WIP_SETUP_COSTS
WIP_UMS
WIP_UNIT_COSTS
CREDIT_LIMIT
JOB_LIMIT
PAST_DUE_LIMIT
NS_DEPOSIT
PAST_DUE_DAYS
STOCK_DEPOSIT
CREDIT

IS_COD

Release 8

Description........ccooooveiieeeiies
@ID

Customer ID

Vendor ID

Entity Name

Entity Address

Address Second Line

City

State

Zip Code

Country

Entity Type MV by position

Is Bill To Customer

Is Ship To Customer

Is Branch Entity

Is Pay To Vendor

Is Ship From Vendor

Is Branch Cash Account Customer
Is Freight Vendor

Is Prospect Customer

Is Manufacturer Vendor

Sorts ENTITY file

Index (used for searching)

Bill To ID (for Ship To) (Customer)
Pay To ID (for ship from) (Vendor)
List of Ship-From Vendors for Pay-To entity (Vendor)
Customer Class

List of Ship-To Customers For Bill-to entity (Customer)

EDI Group ID

Contacts

Phone Numbers

Order Entry Message (upto 10 lines of text)
Order Entry Triggers (Customer) Fax, email etc.
Order Limit

Work In Process Data

Work In Process Days

Work In Process lds

Work In Process Setup Costs

Work In Process Unit of Measures

Work In Process Unit Costs

Customer credit limit

Job Limit

Customer Past Due Limit

Deposit amount required for NonStock items
Customer Past Due Days

Deposit amount required for Stock items
Credit Specifications

Is Cod Customer

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

Typ Attr Val. Just

O © 00N O AN =

-_—
O WO NNNSNNSNNSNNNOOORA®®WNMNN-OOO
—_—

N NNDNNDNDNNMNMNMNMNMNMNDNMNMNDNDNDN=2 2O A a a aa
NDNNMDNMNMNDNMNDN-_2 2 A a a0 00o~NOOabs~wN
N NN A

0Oo0oo0oDo0oo0oo0o0Do0D0DU0o0Do0Do0DU0UU00Do0o0U0U0DU0U0U0o0o0oD00U0U 0000000000000 000O00O0o
N —
w -

TAON 2 WD W= how-a N

N
w
N

Page 213

00XV AO0AO00F 0D D0

IS_COD_CREDIT
REQ_APPROVAL
REQ_APPROVAL_CREDIT
NO_OE

NO_OE_CREDIT
NO_OE_AUTH
NO_PRINT_CREDIT
NO_PRINT_AUTH
AUTH_BR_DATA
AUTH_BR

ACTIVE_BR

BR_ACT LEVEL
ONE_TIME_ACT_LEVEL
PRICE_CLASS_OVRD
OVERRIDE_TERMS
AUTH_PERSONNEL_REQD
CUST_TERMS
AUTH_NAMES
AMT_ALLOWED
COMPANY_CHECK
PERSONAL_CHECK
TAX_EXC_GROUPS
TAX_STATE_CODES
TAX_EXP_NBR
PRICING_TYPE
TAX_JUR_OVERRIDE
APPLY_CREDITS
USE_DFLT BT_CR
FREIGHT_OUT_EXEMPT
FREIGHT_IN_EXEMPT

SEPERATE_BILL_TO_CREDIT

OUTSIDE_SALES
PRICE_STYLE
BACK_ORDER_STATUS
INSIDE_SALES
PO_NUM_REQ
DEFAULT_PO_NBR
DEFAULT_RELEASE_NBR
SHIP_VIA

PAYMENT_DAYS
START_DATE
USER_DEFINED
INVOICE_PRINT_COPIES
INVOICE_FAX_COPIES
INVOICE_SELECT_CODE
SHIP_INST_DFLT
HOME_BR
HOME_TERRITORY
EXPENSE_DIST_CODE
EXPENSE_ACCOUNT_NBR
EXPENSE_PCT

Release 8

Is Cod Customer when credit limit exceeded

Print approval required message on all shipping tickets
Print approval required message on ship tickets override
No Order Entry

No Order Entry when credit limit exceeded unless a
No Order Entry regardless of credit limit unless a

No printing of shipped ticket when credit exceeded
No printing of shipped ticket unless authorized
Branches & Territories Customer/Vendor has access
List of Branches

Active Branches (1 = Yes, Null = No)

Branch activation level

One-Time activation level

Price Class Override vm1-Matrix Prices, vm2-Type C
Overridden Invoice Terms Code for Service Charges 1
Authorized personnel only 1 =Y

Customer Payment Terms

Authorized buyers to place sales orders

Max order amount for authorized buyers

Accept Company Checks 1 =Y

Accept Personal Checks 1 =Y

Tax Exception Groups

Customer State Tax Exempt Code

Tax Exempt Number

Customer Pricing Type / Vendor Type

Tax Jurisdiction Override

Apply credits to oldest buckets 1 =Y

1=Use Dflt 2=Use Billto (Credit information)
Customer is exempt from outgoing freight charges
Customer is exempt from incoming freight charges
Separate AR from Bill-To

Outside Salesperson

Pricing Print Style for Orders

Backorder Status

Inside Salesperson

Purchase Order Number required

Default Purchase Order Number

Default Release Number

Default Ship Via code

Payment Days

Start Date (Create Date)

Number Invoice Print Copies

Number Invoice Fax Copies

Invoice Select Code

Default shipping Instructions

Home Branch

Home Territory

Expense distribution codes (Vendors)
Expense Branch~Account numbers (Vendors)
Expense distribution percentages

UniVerse Data Structures with Report Writer and Mass Load

O0oo0o0oD0U0o0Do0D0DU0U0D0D0D000D0D0U0 000000000 0000000000000 00D0O0000O0OO0OO0

&

ACTIVA
23

23
23
23
23
23
23
23
24
24
24
24
24
25
26
27
28
29
30
31
31
32
33
34
35
36
37
38
39
39
40
41
42
43
44
45
45
45
46
47
48
49
50
50
51
52
53
54
55
56
57

Page 214

© 0o N O~ WN

A WODN -

NT

o B v I B B I B B B D I VPV v I v B v R R B R R B v R VR VR B B s B L v R v v R R v v B R VIR VI VR VR ¥

xrrO rrOOr X0Xx

VENDOR_TERMS
VENDOR_FREIGHT_TERMS
OVER_SHORT_PERCENT
OVER_SHORT_DOLLAR
VENDOR_BACK_ORDER
STATEMENT_TYPE
BATCH_STATEMENT
DELETE_FLAG

ALT_CUST
REBATE_DATA
REBATE_PRODUCT_ID
REBATE_ENTITY_ID
REBATE_EXPIRE_DATE
REBATE_NUMBER
ROE_DATA
ROE_LOG_BID
ROE_LOGORDERS
ROE_DFLT_MSG_LOGIN
ROE_DFLT_MSG_NEW_ORD
ROE_SLAVE_PRT
ROE_VALID_STATUS
ROE_LOGIN_MSG
ROE_DFLT_MSG_ORD_CHG
ROE_SHOW_PROD_AVAIL
ROE_DFLT_ORD_STATUS
ROE_B2B_PASSWORD
ROE_LOGORD_ERRORS
ROE_PKG_QTY
ROE_MSG_VALID_USERS
ROE_SHOW_AVAIL
ROE_DISCOUNT
ROE_AR_INFO
ROE_SHIP_VIAS
ROE_SHOW_LIST_PRC
ROE_ORD_QUEUE
ROE_CC_ENTERED
ROE_REQ_ORD_BY
ROE_ALLOW_NEW_ST
ROE_HIDE_LED BUTTON
ROE_HIDE_ACCT_INQ
ROE_B2B_POST_URL
ROE_LOGOFF_URL
ROE_HIDE_ZERO_PRC
ROE_MAX_SHP_DISPLAY
ROE_PDW
ROE_CATALOG
ROE_ALLOW_PRC_VAR
ROE_PREVENT_BID_MODS
PRICE_LINES
INIT_STAT_OVERRIDE
SALES_SRC_OVERRIDE

Release 8

Vendor Payment Terms

Vendor Freight Terms

Maximum% for A/P Invoice can be over/short
Maximum dollar amount A/P Invoice can be over/short
Vendor Backorder status

alance Fwd/<O>pen Item Statement
Batch Statement

Delete Flag

Alternate Customer/Vendor Id

Rebate Product IDs and Price Line #
Product, Price Line, Sell Group

Rebate Vendor

Rebate Expiration Date

Rebate Contract Number

Remote Order Entry Data

Remote Log Bids For Review

Remote Log Orders For Review

Remote Default User Messaged Upon Log In

Remote Default User Messaged With New Order Number

Remote Slave Printer (Blank=No ROE Printing)
Remote Valid Order Statuses

Remote Log In Message

Remote Default User Messaged With Order Changes
Remote Show Product Availability

Remote RDC Default Order Status

Remote B2B/Web Order Entry Password

Remote Only Log Order With Errors

Remote RDC Round To Sell Package Qtys
Remote Message Valid Users

Remote Show Availability For Order Branches
Remote Order Entry Discount Percent

Remote Web Order Entry A/R Information Password
Remote Valid Ship Vias

Remote Show List Price In Web Order Entry
Remote Order Queue Users

Remote Force Credit Card Info To Be Entered
Remote Required Ordered By

Remote Allow Creation Of New Ship To Customers
Remote Hide Ledger Button

Remote Hide Account Inquiry Button

Remote B2B Post URL

Remote WOE Logoff URL

Remote Hide Products With Zero Pricing

Remote Maximum Number of ST's to Display Per Page
Remote PDW flag

Remote Catalog flag

Remote Allow Pricing Variance Percentage
Remote Prevent Mod of Non-WOE Bids

Valid Price Lines

Initial Status Override

Sales Source Override

UniVerse Data Structures with Report Writer and Mass Load

&

59
60
61
62
63
64
65
66
67
67
67
67
67
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
68
70
71
72

O000oD0U0o0Do0oD0DU0D0D0D000D0D0U0 0000000000000 0000000000000 0O00OO0OO0OO0

Page 215

ACT;;IANT

A WODN -

0 N O WOWON -

W W WWNDNDNDNDNNDNDNDNNDNDDN=2 2 A A a A A A
WIN =20 00N, WN-20O©00NOOOOGOPN»WN-~OO©

| e) s N E p” o N S S Y) S i Y s S i S > o A S e i e S N S Y Y D S Y S p i e p i S N i R N N R > v B 0 R i

SHIP_BR_OVERRIDE
PRICE_BR_OVERRIDE
PRINT_KIT_COMPS
REQUIRED_LEAD_TIME
MAX_EARLY_SHIP_DAYS
SIC_CODE
CUSTOMER_SELECT _CODE
SOE_USER_DEF_DOC
PARENT_STATEMENT _ID
RANK

POINTS_DATA
SINGLE_INVOICE_FLAG
MAX_COLLECT_DAYS
CONTRACT_PRICING_IDS
UET_EARLY_DAYS
UET_LATE_DAYS
NORMAL_DELIVERY_TIME
DUNN_BRADSTREET _NBR
CERTIFICATION_DATA
CERTIFICATION_CODE
CERTIFICATION_NAME
CERTIFICATION_NBR
CURRENCY_TYPE
ALT_BILL_TO_NAME
ALT_BILL_TO_ADDRESS
ALT_BILL_TO_ADDRESS1
ALT_BILL_TO_ADDRESS2
ALT BILL_TO_ADDRESS3
ALT_BILL_TO_ADDRESS4
ALT_BILL_TO_ADDRESS5
ALT BILL_TO_CITY

ALT BILL_TO_STATE

ALT BILL_TO_ZIP

ALT BILL_TO_SORTBY
ALT BILL_TO_USE_ST
EMAIL_PREFERENCE
WOE_FORMS
VEND_UBAP_GL_ACCT
CC_DATA

CC_TYPE

CC_NUMBER
CC_EXP_DATE
CC_NAME
CC_ADDL_INFO

cC_zIP

CC_AUTH_TYPE
CC_ADDRESS
CC_INFO_TYPE
CC_REF_NBR_TYPE

CC_OVR_TERMS
CREDIT__CARDCHG_TAX

Release 8

Shipping Branch Override

Pricing Branch Override

Print Kit Components? (Y/N/Default)
Required Lead Time days

Maximum Early Ship Days

SIC Code

Customer Select Codes

SOE Document Printing ID

Parent Statement Customer ID
Customer Ranks (A to G)

Points Data

Single Invoice Flag (Y=1)

Maximum Collection Days

Contract Pricing IDs

UET Early Days Allowed

UET Late Days Allowed

Normal delivery time of day

Dunn and Bradstreet Number
Certification Information
Certification Code

Person who holds certification
Certified persons certification number
Primary Currency Type (Blank=System)
Alternate Bill-To Name

Alternate Bill-to Address

Alternate Bill-to Address1

Alternate Bill-to Address2

Alternate Bill-to Address3

Alternate Bill-to Address4

Alternate Bill-to Address5

Alternate Bill-To City

Alternate Bill-To State

Alternate Bill-To Zip-code

Alternate Bill-To Sort-by

Alternate Bill-To - Use Ship-To Flag
Email Preference (Plain or Html)
WOE Custom Forms

UBAP Override GL # (Vendor Addl screen)
Credit Card Data

Credit Card Type

Credit Card Number

Credit Card Expiration Date

Credit Card Name

Credit Card Additional Information
Credit Card Zip Code

Credit Card Authorization Type
Credit Card Address

Credit Card Info Type (None, Prompt, Required)

Credit Card Ref Num Type (Release #, Cust PO, Invoice
etc)
Credit Card Override Terms

Credit Card Charge Tax

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

OO0 UO0O0DO0D00O0D0D0D00D0D0D000D0D0D00D0D0D0DU0U0D0D0D0D0D0D0D0D0U0O0D0D0O0D0D0D0DO0O0OD0O000O00O0OO0OO0o

73
73
74
75
76
77
78
79
80
81
82
83
84
85
86
86
87
88
89
89
89
89
90
91
92
92
92
92
92
92
93
94
95
96
97
98
99
100
101
101
101
101
101
101
101
101
101
101
101

101
101

Page 216

1
2

a b~ ON -

N =0 N0 O~ WON -

_ -
A w0

|) e S N s > v > v N e N) p > v A p i i e N N p N S i i R R N E N > ¢ B> v B s I i v B o B i i i i i e v B o R i i

-

1099_TAX_ID

VALID_POS

FREIGHT _DAYS
RESTRICT_SUBS
TAX_EXEMPT_CODES
LINE_ITEM_TAX
ACL_USERS

ACL_LEVEL

CAGE_CODE
COMMISSION_TYPE
COMMISSION_SLSPERSON
COMMISSION_PCT
CUST_ALLOW_DUP_ORD
WEB_ADDRESS
EMAIL_ADDRESS
EMAIL_TYPE
FREIGHT_DATA
FREIGHT_EXEMPT_HANDL
FREIGHT_INSR_REQR
FREIGHT_XTRA_HANDL
FREIGHT_MIN_EXEMPT
CARRIER_ACCOUNT_DATA
WRITER_COMM_PCT
INSIDE_COMM_PERCENT
OUTSIDE_COMM_PCT
COMM_REVIEW_DATE
OVERRIDE_COMM_REASON
ALT_BILL_TO_FAX_NBR
INTERNAL_NOTES
LAST_PRICE_CHECK
CONSIGNED_INVENTORY
CONSIGNED_SHIP_TO
CREDIT_MANAGER
ANTICIPATION_CREDIT
UPDATED_DATE
INCLUDE_SVC_CHARGES
KEYWORDS
COMMISSION_PLAN
EMAIL_INDEX
EXCL_FROM_INDEX
DROP_POINT

TIME_ZONE
ROE_USER_LOGIN
ROE_USER_ORD_CHANGE
ROE_USER_NEW_ORDER
ROE_ORDER_QUEUE_USER
PRICE_PRECISION
EXCL_SERVICE_CHARGE
PRODUCT_ZONES
ECOMM_VENDOR_ID
ECOMM_WWW_ADDRESS

Release 8

1099 Tax ID (Vendor)

List of Valid Purchase Order Numbers

Freight Days (Vendor)

Does Customer accept substitutes? (1=Y)

Tax Exempt Codes (Customer)

Line Item Tax (*=Disabled; 1=Always Prompt;2=Not
Access Control List - Users

Access Control List - User Level

Cage Code (Vendor)

Split Commission Type

Split Commission Salespeople

Split Commission Percent

Disable Duplicate Order Check

World Wide Web Address

Email Addresses

Email Type

Freight Data

Freight Exempt Handling

Freight Insurance Required

Extra Handling Charge

Minimum Amount for Freight Exempt

Carrier account number and type

Writer Overridden Commission Percent

Inside Salesperson Overridden Commission Percent
Outside Salesperson Overridden Commission Percent
Overridden Commission Percent Review Date
Overridden Commission Reason

Alternate Bill To Fax

Default Internal Notes

Flag for using Last Price

Does customer use consignment inventory (1=Y)
Ship-To used for consignment inventory

Credit Manager for Credit Queue

Anticipation Credit (Y/N)

Last date and time record was updated

Include service charges in service charge calculation
Keywords used for searching

Commission Plan

Number of E-mail records

Exclude from Index searching

Drop Point Branch (Customer)

Time Zone

User to be messaged upon Login

User to be messaged with order changes

User to be messaged with new orders

User to be messaged for Remote Order Queue
Price Precision Decimal Places

Exclude Service Charge from Service Charge Calc (1
Product zones customer is allowed to buy from
Ecomm Vendor ID

Ecomm WWW Address

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

102
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
117
117
117
117
118
119
119
119
119
119
121
122
123
124
124
125
126
127
128
129
130
131
132
133
134
136
136
136
136
137
138
139
140
140

0000000000000 00D0D0U0 000000000 0000000000000 0DU0D0O000O0OO0OO0OO0

Page 217

A WODN -

a b~ ON -

A OON -

ECOMM_PRODUCTS
ECOMM_CUST_ID
ECOMM_PASSWORD
REMIT_TO_OVERRIDE
MIN_CHECK_AMOUNT
MAX_DAYS_SINCE_POSTED
BO_PRINT_OPTION
DEMAND_BR
TEMPORARY_EXPORT
COLLECT_Q_LAST CALL
COLLECT_Q_NEXT_CALL
COLLECT_LETTER_SENT
COLLECT_LETTER_TYPE
PRINT_STAT_OVERRIDE
CATEGORY_ID
EDI_GRP_ID
SOLAR_PROCURE_PRI
ROUTE_TYPES
ROUTE_VENDORS
ROUTE_CUSTOMERS
EXCL_CONSIGN_CREDITS
ECOMM_IDS
RESTRICT_PRICING
DROP_POINT_BR
ADDITIONAL_NAME
SEPARATE_CHECK_PRINT
STAGING_LOCS

VENDOR_GL_FREIGHT_OVERRID

VEND_GL_FREIGHT_OVER
CREDIT_RELEASE_PCT
W9_RECEIVED_DATE
CERT_INS_RCVD_DATE
STAGING_LOCS_BR
PASS_ALONG_DISC_PCT
PO_TARGET
REQUIRE_CHECK_VERIFY
EXCL_COLLECT_INVOICE
MASTER_JOB_BID_NBR
CONSOLIDATE_INVOICE
STATEMENT_CYCLE
PULL_CODE
PAY_VIA_EFT
EFT_PAY_METHOD
ACH_FORMAT
ACH_ROUTING
ACH_ACCOUNT
ACH_ACCOUNT_TYPE
TAX_EXEMPT_EXP_DATE
ROUTE_BR
INVOICE_PRINT_STYLE
TAX_CITY_CODE

Release 8

Products, Lines, & Groups allowed for Ecomm
Ecomm Customer ID

Ecomm Password to access account
Remit to override address ID

Minimum Check Amount

Maximum Days Since Posted

Backorder Print Option

Demand Branch Override

Temporary Export

Last time customer was called from A/R Collection
Next called scheduled from A/R Collection Queue
Was collection letter sent to customer

Type of collection letter sent to customer
Print Status Override

Category Id

EDI ISA Group ID

Solar Procurement Priority

Route Types

Route Vendors

Use Routing Customer

Exclude Consignment Credits (1=Y)
ECommerce Unique Identifiers for this account
Restrict Pricing in SOE (1=Y)

Vendor Drop point branch

Additional Name

Vendor requires separate check printing for each |
Staging Locations (Customer)

Freight G/L Account Override (Vendor)
Freight G/L Account Override (Vendor)
Customer Credit Release Percentage

W-9 Forms Received Date

Certificate of Insurance Received Date
Staging Locations Branch

Pass Along Discount Holdback Percent
Purchase Order Target & Value

Require check verification (1=Y)

Exclude Collect Invoices (1=Y)

Master Job Bid Order Number
Consolidated Invoice Flag (1=Y)

Statement Cycle

Pull Code

Payment Via Electronic Funds Transfer
Electronic Funds Transfer Payment Method
ACH Format

ACH Routing/Transit #

ACH Account #

ACH Account Type

Tax Exemption Expiration Date

Route Branches

Invoice Print Style

Tax City Code

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

0000000000000 00D0D0U000D000 000000000000 0000000000000 O0OO0

140
140
140
141
142
142
143
144
145
146
146
146
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
160
160
161
162
162
163
164
165
166
167
167
168
169
170
171
171
171
171
171
171
172
173
174
175

Page 218

4
5
6

A WODN -

o b WN -~

TAX_COUNTY_CODE
ASN_VENDOR_TYPE
VENDOR_HOLD_LIST
ACCOUNT_MANAGER
HTTP_ADDRESS
ASN_SHIP_CTNR_NBR
SOE_FILL_RATE_DATA
SOE_FILL_RATE_PCT
SOE_FILL_RATE_MEASUR
CONTRACT.UPLOAD.DFLT
AP_BAL_120_DAYS
AP_BAL_30_DAYS
AP_BAL_60_DAYS
AP_BAL_90_DAYS
AP_BAL_CURRENT
AP_BAL_FUTURE
AR_BAL
AR_BAL_120_DAYS
AR_BAL_30_DAYS
AR_BAL_60_DAYS
AR_BAL_90 DAYS
AR_BAL_CURRENT
AR_BAL_DEPOSITS
AR_BAL_FUTURE
BAL_OVER_60_DAYS
BAL_OVER_90_DAYS
CITY_ST_ZIP

COGS

COUNT
CR_LMT_JOB_LIMIT
CR_LMT_JOB_TOTAL
CR_LMT_PAST_DUE_AMT
CR_LMT_PAST_DUE_DAYS
CR_LMT_PAST_DUE_LMT
CR_LMT_TOTAL_AR
GP

GP%

MTD_COGS

MTD_GP

MTD_GP_PCT
MTD_SALES
POINTS_ADJ
POINTS_BAL
POINTS_EARN
POINTS_USED

SALES

VIC

VIEWER_ID
YTD_COGS

YTD_GP

YTD_GP_PCT

Release 8

Tax County Code

ASN Vendor Type (Vendor)
Vendor Hold List (Customer)
Account Manager

HTTP Address

ASN Accept shipment container number level

SOE Fill Rate Data

SOE Fill Rate Percentage

SOE Fill Rate Measurement
Contract Upload Dflts

A/P 120 Day Balance

A/P 30 Day Balance

A/P 60 Day Balance

A/P 90 Day Balance

A/P Current Balance

A/P Future Balance

A/R Balance

A/R 120 Day Balance

A/R 30 Day Balance

A/R 60 Day Balance

A/R 90 Day Balance

A/R Current Balance

A/R Deposit Balance

A/R Future Balance

A/R Balance Over 60 Days

A/R Balance Over 90 Days

City, State, Zip

COGS

COUNT

Credit Limit Job Limit

Credit Limit Job Total

Credit Limit Past Due Amount
Credit Limit Past Due Days
Credit Limit Past Due Limit
Credit Limit Total AR

GP

GP%

Month to Date Cost of Goods Sold
Month to Date Gross Profit Dollars
Month to Date Gross Profit Percent
Month to Date Sales

Points Adjustments

Points Balance

Points Earned

Points Redeemed

Sales

Vendor / Customer Flag

Viewer ID

Year to Date Cost of Goods Sold
Year to Date Gross Profit Dollars
Year to Date Gross Profit Percent

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT
D 175 2
D 176

D 176

D 177 1
D 177 2
D 178

D 179

D 179 1
D 179 2
D 190

XXV AOAFCOVO0DO0D0DO0D0000000000FC0VD000FC 0V0VOH0H0H0H0XHNXHNXNVXNVANOAN0000rrrC g prrr o

Page 219

YTD_SALES

Year to Date Sales

Product File Layout Release 8

PRODUCT File Listing
Dictionary ID............
@ID

PRODUCT_ID

DESC

DESCRIPTION
GL_PRODUCT_TYPE
STATUS
KEYWORDS

PRICING_PRODUCT_ID

UOM_QTY
INDEX_TYPE
PRICE_LINE
UNIT_WEIGHT
PDW_ID

BUY_LINE
LOAD_FACTOR
COMMODITY_CODE
UOM_ABBR
UOM_QTY_SALES
UOM_QTY_PURCH
UOM_QTY_TRANS

UOM_QTY_ADJUST
UOM_QTY_INVTY
DEFAULT_UOMS
PROCURE_GROUP
SELECT _GROUP
SORT_CODE
EXEMPT_GROUPS

EXEMPT_CODES
CATALOG_NBR
CREATE_DATE
CREATE_TIME
CREATE_USER
CREATE_INFO
PER_QTY
BR_PER_QTY
HAZARD_PACK_GRP
COMPONENT_QTYS
COMPONENT _IDS
KIT_IDS
SUBSTITUTES
SUBSTITUTES_BRS

Release 8

Description.........cuveeeieiiiiiieieeieen,

Item ID

Product ID

Product Description

Product Description

General Ledger Product Type

Status 1-stock,2-non,3-misc,4-delete,5-review,6-co
Product Keywords

Use Pricing From The Following Product

The Divisor Used To Determine The Unit Of Measure
Lookup Index Type P-Primary, C-Catalog, null-Prima
Price Line

Weight Of A Quantity Of 1 Of This Product

PDW internal product ID

Buy Line

Load Factor Of A Quantity Of 1 Of This Product
Commodity Code

Unit Of Measure Quantity Abbreviation, this field
Default Unit Of Measure Quantity Used In Sales
Default Unit Of Measure Quantity Used In Purchasing
Default Unit Of Measure Quantity Used In Transfers
Default Unit Of Measure Quantity Used In
Adjustments

Default Unit Of Measure Quantity Used In Inventory
MV list of 5 default areas to use UOM from attr 15
Product procure group ID

Product select group

Product sort code

Tax Exemption Group, corresponds with PRD<23>
Tax Exemption Number; Reduced Rate=1; Always
Tax=2

Product catalog number

Product creation date

Product creation time

Product creation user

Product creation information

Stores default per qty for product

Stores default per gty for product

HAZMAT Pack Group

Kit component quantites VM per attr 53

Kit component product ID's

Kit product ID's that this product is a component
Substitute product ID's

Substitute branches corresponding to attr 55

UniVerse Data Structures with Report Writer and Mass Load

&

lACTIVANTé

Typ Attr

0000000000000 UDTO0DU0UO0OO0ODU0DU0 UDO0DO0ODO0D0DU0UO0OO0D0D0DO0U00D0D0D00O00O0o

O~NOP~r,WN-=0O0

Page 220

Val.

N —

FIXXXC DT OD

SUBSTITUTES_NOTES
OE_REMINDER_MSG
ADD_DEMAND_BASE
SERIAL_LAST_ASSIGNED
PRIMARY_UPC_CODE
UPC_CODE_USER 2
UPC_CODE_USER 3
UPC_CODE_USER 4
UPC_CODE_USER 5
UPC_CODE_USER 6
UPC_CODE_USER_7
UPC_CODE_USER_8
UPC_CODE_USER 9
UPC_CODE_USER_10
UPC_CODE_USER_11

SECONDARY_UPC_CODES

PU_IDS
ADD_DEMAND_PNS
ALT_DESC

MERGE_PN

HAZMAT CLASS
HAZMAT_CLASS_DESC
HAZMAT ID_NBR
HAZMAT _CODE
HAZMAT _DATA
CNTR_WHSE_TYPE

COMPONENT_CMTS
KIT_PRICE_OPTS
PRINT_KIT_COMPS
KIT_COGS_OPTS
KIT_COMM_OPTS
KIT_OPTIONS
COMPONENTS_SPOIL
PN_CALC_TYPE
GL_INV_ACCT_OVRD
CERTIFICATION_REQD
BUDGET_GROUP_ID
XREF_AGENT
XREF_DESC
XREF_PARAM_DATA
XREF_DATA
SUBSTITUTES_TYPE
SUBSTITUTES_SUG_QTY
WIP_ORDER_TEMPLATE
WIP_INCOMING_QTY
WIP_PRICING
WIP_COSTING
WIP_SERIAL_PROMPT
WIP_SERIAL_MASK
WORK_ORDER_INFO
TREAD_DEPTH

Release 8

Substitute notes corresponding to attr 56

VM list of reminder notes

W - Weight L - Load otherwise - Units

Last serial number assigned to this product

Primary UPC code

UPC code - user defined 2 - cross ref in PU.IDX file
UPC code - user defined 3 - cross ref in PU.IDX file
UPC code - user defined 4 - cross ref in PU.IDX file
UPC code - user defined 5 - cross ref in PU.IDX file
UPC code - user defined 6 - cross ref in PU.IDX file
UPC code - user defined 7 - cross ref in PU.IDX file
UPC code - user defined 8 - cross ref in PU.IDX file
UPC code - user defined 9 - cross ref in PU.IDX file
UPC code - user defined 10 - cross ref in PU.IDX file
UPC code - user defined 11 - cross ref in PU.IDX file
SVM list of all secondary UPC codes for product
MV list of all UPC codes for this product

VM list of product ID's to use in calculating demand
Alternative product description

Product merge part number to keep

Hazardous class for product

Hazardous class description

Hazardous data ID number

Hazardous data code

Hazardous data for product

Central Warehouse Type: Top-Down, Bottom-Up
Kit component comments - MV by component stored
in

Kit price options are (2,3 only valid for non-dynamic)
Flag to print kit components

Kit cogs options are (1,2 only valid for non-dynamic)
Kit comm options are (1,2 only valid for non-dynamic)
Kit options

Spoilage per component in attr 53 - VM delimited
Flag that will determine if points are calculated
Inventory Account Override

VM list of certification ID's

Sales Budget Group ID

XREF Agent

XREF Description

XREF Parameter Data

External Reference Data

VM list of substitute types corresponding to attri

VM list of substitute products suggested selling q
Product work order template

WIP incoming qty that will be built when this temp
WIP pricing method default

WIP costing method default

Product work order serial number prompt check

Set serial number mask to use when auto calcing ne
Product work order information - Please see indivi
Original product tread depth

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

57
58
60
61
63
63
63
63
63
63
63
63
63
63
63
63
63
64
66
67
80
80
80
80
80
83

85
86
86
86
86
86
87
88
89
91
92
93
93
93
93
95
96
100
100
100
100
100
100
100
103

0000000000000 0D 0000000000 UD0DU0UDO0OD0ODU0D0DU0UDO0O0OD0D0D0DU0O0OD0D0D0D0O0O0D0D0D00O0

Page 221

O~NO O WN =

- a
N =~ O ©

N A WODN - A WN -~

NOoO R OWON -~

PREPAID_FET
DIRECT_SHIP_ITEM
DIRECT_SHIP_VENDOR
DIRECT_SHIP_INFO
IS_DYNAMIC_KIT
DUTY_CODE
DUTY_CODE_COUNTRY
DUTY_CODE_INFO
LAST_UPDATE_DATE
LAST_UPDATE_TIME
LAST_UPDATE_INFO
MSDS_ID

ADD_DEMAND_EXP_DTS
ADD_DEMAND_PNS_TBRS

ADD_DEMAND_CN_INFO
SUB_PRODS
SUB_PROD_OPTIONS

AUTH_BRANCHES
MASTER_PN
EROUTE_DELIVER_TIME
EROUTE_VOLUME
ORD_INV_FACTOR
SECONDARY_BLINES

BLINE_BUY_PACKS
BLINE_BUY_DIVS
DISABLE_DUP_CHECK
PRODUCT_ZONES
PRODUCT_ZONES_INCL
RESTRICT_PRICE_CHNG
SECONDARY_SERIAL_NBR
OE_REMINDER_BR
OE_REMINDER_AREA
PN_LENGTH

PN_WIDTH

PN_DEPTH
DETAIL_LOT_HOLD
DETAIL_LOT_QUALITY
DETAIL_LOT_INFO
MOD_PROC_STEPS
MOD_PROC_LEAD
WIZARD_SUBROUTINE
WIZARD TAG_DATA
TAG_ALONG_PNS
PARENT TAG_ALONG
KIT_KEY_FLAGS
PRORATE_KIT_PRICE
PROD_BR_ID

Release 8

Y/N flag for prepaid FET

Y/N flag for direct ship item

Vendor to direct ship item from

Flag for direct shipment item

Y/N flag if product is a dynamic kit

Duty harmonizing code

Duty harmonizing code country of manufacture
Duty harmonizing code information

Product last update date

Product last update time

Product last update information

MSDS Sheet internal ID

VM list of expire dates to use with attr 64 to calculate
dmd

VM list of branches to use with attr 64 to calculate
dmd

VM list of customer information to use when
calculating customer demand

Associated sub-products used for master
Associated sub-product options MV to attr 116

VM list of branches authorized for product. If null, all
branches are authorized

If this product is a sub-product, store the master PN
E-route time to deliver product

E-route special volume

Order to inventory factor in SOE

VM list of secondary buy-lines

VM list of buy pack overrides corresponding to attr.
124

VM list of buy pack divisible corresponding to at
Flag to disable duplicate product check in SOE
Zones product is valid to sell in - all valid zone
VM list of Include/Exclude corresponding to attr 1
Y/N flag to restrict price changes in SOE
Product secondary serial number

Per reminder note in VM position in attr 58, this
Per reminder note in VM position in attr58, this w
Product length used for laminate cut mod
Product width used for laminate cut mod

Product depth used for laminate cut mod
Exclude detail lot from available if on hold
Exclude from detail lot if quality or rank are not
Detail lot information

Modified product processing steps

Modified product processing leads

Product wizard subroutine

Tag data used for wizard subroutine - free form data
Required tag along products for substitute items.
Product that this product is a tag along for

VM list of flags setting for each component.
Prorate kit price/cost across line items using LIS
Internal Id for the Product Branch File

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

— 0000000000000 0D0D0DU0U00D0D0D0D0 UDTDODUDOO0OD UTDODODO0O U U UDODODODOUDODODODODOOOOo

104
105
105
105
106
107
107
107
108
108
108
109

111
113

114
116
117

118
119
120
121
122
124

125
126
127
128
129
130
131
132
133
134
135
136
137
137
137
138
139
140
141
143
144
145
146

Page 222

1

-

-

o

—xoXxxoAor

LI B> v B ¢ v S v B B BV B W s V)

AV O0O00rr

LEAD_TIME
SELL_QTY
MANUAL_MIN
MANUAL_MAX
BUY_PKG

TREND
SERVICE_STOCK
LOST_SALE
LOST_SLS_%
EXCP_SLS %
FORECAST_METHOD
BTQ
BCKRD_TLRNC_QTY
FCAST.METH
EOQ_PERCENT
EOQ_%
EOQ_DOLLARS
EOQ_$
PROD_CONTROL
STOCK_FLAG
SAFETY_FACTOR
SEASONAL
MANUAL_EXPIRE_DATE
LEAD_FACTOR
LABEL_PER
FREIGHT_FACTOR
FREIGHT _CHG
PRICE_SHEET
DFLT_LOCATION
DISCOUNT_CLASS
BUY_GROUP
SELL_GROUP
SERIAL
COMM_GROUP
BUY_PKG_DIVISIBLE
CALC_DEMAND
BR_HITS
NETWORK_HITS
POINTS_DATA
CUST_SERVICE_STOCK
MIN_LEAD_FACTOR
EDI_VMI

EDI
PRICE_SHEET_PRT
QTY_BRK_QTY
QTY_BRK_UOM
PASS_DISC
FREIGHT FACTOR_PCT
BR_LIST
FP_REG_HIT
FP_REG_MAX_DAY

Release 8

Lead Time in Days

Minimum Sales Quantity

Manual Minimum Inventory Level for Purchasing
Manual Maximum Inventory Level for Purchasing
Purchase Package Quantity

Trend Percentage

Service Stock Quantity

Lost Sales Percentage

Lost Sales Percentage

Exceptional Sales %

Forecast Method S = Standard M = Median
Backorder Tolerance Quantity

Backorder Tolerance Quantity

Forecast Method

Economic Order Quantity Carrying Cost Percentage
EOQ %

Economic Order Quantity Line Item Purchasing Cost
EOQ $

Location Control for the Product

Branch Specific Stocking Control Y Always Stock, N
Safety Factor

Item Seasonality

Expiration Date for Manual Min and Max

Lead Factor Determines the number of receipts to be
Label Per controls the number of labels to be printed
DELETE ME

Freight Charge

Vendors Price Sheet

Default Location for the Product

Vendor's Discount Class

Buy Group

Sell Group

Serial Number Tracking Control

Commission Group

Divisibility Flag for Buy Package Quantity

Include Item in Demand Calculation for Central Purch
Minimum Number of Hits to Stock Item in the Branch
Minimum Number of Hits throughout the Central Dist.
Customer Points Program Data

Customer Specific Service Stock Data, Multi-Valued
Minimum Number of Receipts to use for lead time calc
EDI Vendor Managed Inventory

Minimum Lead Factor

Price Sheet Print Flag

Multiple value quantity break quantities by matrix
Multiple value quantity break quantities unit of m
Percentage for Pass Along Vendor Discount

Freight Factor Percentage

Multiple Value listing of branches and territories
Forecasting parameter for non-seasonal items
Forecasting parameter for non-seasonal items

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

© oW NNOOOPWN-~O

Page 223

N —

P I v B B s I v R v B B B B v v I v I v B i I B B L - v R v v v > v R B v R B R v v R v R VR B v I v R B B V B v B v R U R v R V0

FP_REG_MIN_DAY
FP_MAX
FP_SNL_HIT
FP_SNL_MAX_DAY
FP_SNL_MIN_DAY
FP_AUTOTREND

FP_INCLUDE_DIR
MIN_GP_PERCENT
LEAD_DAYS
RESTRICT PRC_CHNG
SALES_HITS

AVAIL

AVG_PRICE
AVG_SALE_QTY
COUNT

DAYS_OUT
DEMAND_DAY
DEMAND_PERIOD
DOLLAR_SIGN

EOQ
EXCP_QTY_EXCLUDED
LAST_DEMAND_CALC
LOW_SALE
AVG_COST

NO_PRINT

BASIS
PRICE_LINE_SEQ
RANK_BR1

RANK

HI_TRANS_QTY
RAW_DEMAND
RAW_HITS
SUM_SALES HITS
VIEWER_ID

Forecasting parameter for non-seasonal items
Forecasting parameter for seasonal items
Forecasting parameter for seasonal items
Forecasting parameter for seasonal items
Forecasting parameter for non-seasonal items
Use Auto-Trend Percentage Calculations

Include Direct Shipments in the calculation of daily
demand

Minimum Gross Profit Percentage

Lead Days

Restrict Price Change in Sales Order Entry Flag
of Sales Transactions Per Year

Available Inventory

AVERAGE PRICE

Average Sale Quantity

COUNT

Days Out of Stock

Demand in Units/day

Demand Period

DOLLAR_SIGN

EOQ

Largest Sale within forecast period That is excluded
Last Demand Calc Date

Low Sale Qty

Moving Average Cost

Price Book No print Flag

Price Line Basis; needs column data or set common
Price Line Sequence

Prod Rank in Branch 1

Product Rank

Qty of Largest Transaction

Raw demand for forecast period

Raw Hits for Demand Period.

Summation of Sales Hits in all branches.
VIEWER_ID

AR File Layout Release 8

Dictionary ID............
AR_ID
AP_CHECK_NBR
CHECK_NBR
INV_NBR
PO_NBR
APPLIED _ID
APPLIED_DATE
BR_GL

GL_AMT
BALANCE_DUE
AR_BAL_DUE

Release 8

Description..........coovvviviiiiiiiciceenn,

AR ID

Disbursement Check Number

Customer's Check Number from Cash Receipt
Accounts Payable Vendor Invoice Number

PO Number from Sales Order Header (Indexed)

ID of Ledger record applied to this transaction. F
Application Dates MV'd by Application

General Ledger Postings: Branch~G/L ID MV'd by App
General Ledger Amounts Posted MV'd by Application
Balance Due

AR Balance Due

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT
| 43 R
I 44 R
I 45 R
| 46 R
I 47 R
I 48 L
I 49 L
I 50 R
I 51 R
I 58 L
I R
I R
I R
I R
I R
I R
I R
I R
I L
I R
I R
I R
I R
I R
I L
I R
I R
I L
I L
I R
I R
I R
I R
| L

Typ Attr Val. Just

D 0 L

D 1 L

D 1 L

D 1 L

D 1 L

D 2 L

D 3 L

D 4 L

D 5 R

D 8 R

D 8 R

Page 224

AP_BAL_DUE
UBAP_BAL_DUE
DISCOUNT_AMT
BILL_TO_CUST_ID
PAY_TO_VEND_ID
DISCOUNT_DATE
DUE_DATE
SHIP_DATE
SHIP_FROM_VEND_ID
SHIP_TO_CUST_ID
AP_DEDUCT_AMT
AP_DEDUCT_REASON
HANDLING_CODE
AP_DISC_OVRD_FLAG
STATUS

AP_PMT_INFO
PAY_ON_DATE
AP_IS_PAID_OFF
CR_AMOUNT
GRACE_DAYS
INV_HOLD_CODE
FRT_INFO
FRT_PAYABLE_PO

CURRENCY_INFO
AP_AMTS
GL_SHORT_DESC
REV_CHECK_DISBID
APPL_IDS
AR_AMT
BILL_IN_FGHT
BILL_IN_HANDL
BILL_OUT_FGHT
BILL_OUT_HANDL
CASHBOX_AMT
CASH_AMT
COGS_AMT
COUNT
DISC_AMT
EXP_IN_FGHT
EXP_IN_HANDL
EXP_OUT_FGHT
EXP_OUT_HANDL
FGHT_IN_AMT
INVOICE_GEN
LEDGER_ID
PAYMENT_DAYS
SALES_AMT
TAX_AMT
TAX_JUR
TRANS_TYPE

Release 8

AP Balance Due

Unbilled AP Balance Due

Discount Amount (Original Amount)

Bill-to Customer ID

Pay-to Vendor ID

A/R Discount Date (A/R, A/P, XFER)

Invoice Due Date (A/R, A/P, XFER)

G/L Posting Date (A/R, A/P, XFER)

Ship-from Vendor ID

Ship-to Customer ID

A/P Deduct Amount

A/P Deduct Reason

Special Handling Code

A/P Discount Override Flag (1 = Disc has been over
Status Code (I=Invoice, $=Payment, S=Shipped Xfer,
A/P Payment Info (MV1=Payment Amount,
MV2=Discount

A/P Pay On Date(s) (for Payable records it is Pay
A/P Invoice Paid Off Flag (1=Payable Paid in Full)
Cash Receipt Amount

Number of Grace Days from Terms Code

Invoice Hold Code

Freight vendor information.

Associated Purchase Order number for Freight Vendor
Currency Information (MV1=Currency Type,
MV2=Exchange

AP Amounts

G/L Postings Short Description (Displays in Alt ~)
Reversed Check Disbursement ID for a Payable
Application Ids

AR Amount

BILLABLE INCOMING FREIGHT

BILLABLE INCOMING HANDLING

BILLABLE OUTGOING FREIGHT

BILLABLE OUTGOING HANDLING

Cashbox Amount

Cash Amount

Cost of Goods Sold Amount

Counter: Returns a "1" which can be total to addr
Cash Receipts - Discount Amount

EXPENSE INCOMING FREIGHT

EXSPENSE INCOMING HANDLING

EXPENSE OUTGOING FREIGHT

EXPENSE OUTGOING FREIGHT

Freight In Amount

Invoice Generation

AR ID

Payment Days

Total Sales Amount

Sales Tax Amount

Tax Jurisdiction

Transaction Type

UniVerse Data Structures with Report Writer and Mass Load

--"-"-"-"-""-""="”-""="”-"="-"\-"=-"=-"-"-=-"=-"=-"=-—"=-"="—="—=—=—"Qo0ooOoo vlvhvivivivhviw vlvivivhvivivivivivlvlvlwReRw)

&

ACTIVAN

8

8

9
10
10
11
12
13
15
15
16
17
18
19
20

21
22
23
24
26
27
28
29

31
33
34
35

Page 225

2
3

'_;U'_'_;UNWJU;U;U;U;U;UJJW-!

TV VOO0 0D00AN0N00N0N00O000FCTT T 00

&

ACTIVANT
VIEWER_ID VIEWER ID | L

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 226

PSUB File Layout Release 8

PSUB File Release 8
Dictionary ID............
PSUB_ID

QTY

PRICE

ACCOUNTING_COST
DOLLAR_ENTITY_ID
PRODUCT_ENTITY_ID
OVERRIDE_PRICE

OVERRIDE_COST
KIT_PROD_ID
SERIAL_NBRS
PRICE_BR

CONSIGN_FLAG
LOT_ITEM
ORDER_TIME
@Ak.0

BR
COMPONENT_POS
DIFF_BR
EXT_COST
EXT_PRICE
FULL_ORD_ID
INVOICE_NBR
LED_DET_ID
LOCATION

ORD_ID
PRODUCT_ID
QTY_TYPE
SALE_AMT
SALE_QTY
SHIP_DATE

Release 8

Description........cooccveeveiiiiiiieee e

Unique string of concatenated data

Quantity Moved

Selling Price / Purchasing Cost / Adjustment
Accounting Cost (Cost of Goods Sold) / N/A on
Purchase Order

Dollar Entity @ID

Product Entity @ID

Original (Matrix Determined) Override Selling Price
Original (Matrix Determined) Override Accounting
C

Kit Product @ID

Multi-valued list of serial numbers

Pricing Branch

Consignment Flag: S - Shipping Into Consigned
Inventory

Lot Billing Flag

Time order was processed

@AK.0

Primary Branch (shipping or pricing based on
record)

Kit Component Position

Other branch when pricing and shipping branch are
Extended Cost

Extended Price

Full Order ID

Invoice Number

Ledger Detail ID

LOCATION

ORD_ID

PRODUCT_ID

Quantity Type

Sale Amount

Sale Quantity

Shipping Date

_|
<
©
Pe
p==
=

— o000 OUDU0DOUOO0O CUDODOOO0O OUOOoOo

UniVerse Data Structures with Report Writer and Mass Load

&

ACTIVANT

Just

L
R
R
R
R
R
R
R
L
L
L

| i N

o

Page 227

Width

70
10
12

&

ACTIVANT

Appendix D
Subroutines

The following subroutines include explanations and examples:

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 228

&

ACTIVANT
Dictionary Subroutines

DICT.COMMON = Dictionary Common Prompts which is the prompts hotkey in dictionary
maintenance. Within this document you will see reference to this terminology with a numeric
value after the DICT.COMMON. The numbers represent the following information:

Branch/Territory/All (Multi value list of branches)
Enter Br/Tr/All

Enter Start Date

Enter End/As of Date
Discount Class

Product Location

Price Basis Name
Location Number

Multi Value Pos

10 Enter Br

11 Generic Prompt

12 Ignore Branch Hierarchy

e BN I NV, B N R

O

DICT.AR.FIRST.SALE

This subroutine is used from the AR file and will return a “1” if the order is the first
generation of the invoice. A dictionary using this subroutine can be used for statistical reporting
on the occurrences of a first generation order to the total number of generations that occurred for
an order.

The I-Descriptor screen of the dictionary item would look like:

I-Descriptor Program Maintenance
File Name : AR
Dict ID : FIRST.SALE

SUBR('DICT.AR.FIRST.SALE")

DICT.AR.ITEM.CNT

This subroutine is used from the AR file and counts the number of items on the
generation of the invoice passed back. A dictionary using this subroutine can be used for
statistical reporting relative to how many items are on each invoice generation. (Have you ever
wanted to find out your average number of items that ship out on a generation? This is data that
will help you to obtain this statistic.

The I-Descriptor screen of a dictionary using this subroutine would look like:

I-Descriptor Program Maintenance
File Hame : AR
Dict ID : ITEM.CNT

SUBR{’DICT.AR.ITEM.CNT)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 229

&

ACTIVANT
DICT.AR.JLI

This subroutine is used from the AR file and is part of the indexing. The information that is
returned consists of three segments delimited by a period. The first segment is a numeric value
that returns the type of transaction which is listed below. The second segment is the date of the
posting and the third segment will return the last two digits of the order number (not the
generation of the order).

Example of data returned from S1008886.005is: 1.11176.86
1 = Sales Order
2 = Cash Receipt
3 = Payment on a Sales Order
4 = Purchase Order
5 = Transfer
6 = Sales Order that is paid through cash receipts
7 = Payable
8 = Disbursement
9 = Journal Entry
10 = Inventory Adjustment
11 = Work Order
12 = Rental

DICT.AR.LEDL.INFO
This subroutine is used from the AR file. The two requirements when using this
subroutine in an [-descriptor is to pass in the @ID and the word the system needs to find
in the change log for the transaction.

The system will return the user, date, time, port and change log as shown below.
S0704030.001
DAVIDB 03/21/00 02:51pm /pts/4 DAVIDB Authorized : Overcommitted

An example of an I-Descriptor using this subroutine is:

I-Descriptor Program Maintenance
File Mame : AR
Dict ID : LEDL .OVER

SUBR(’'DICT.AR.LEDL.INFO’ ,@ID, Overcommit’)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 230

&

ACTIVANT
DICT.AR.LEDL.PRT
Similar to the subroutine above it is used only from the AR file. This routine will return
the date, time and user when a ship ticket, pick ticket, invoice, cash sale etc. has been
printed. All occurrences will display for a generation of the order.

For example the data would return:
S0422603.001 DAVIDB 09/04/96 11:54am /tty10
Printed **** Invoice **** on (

DAVIDB 09/19/96 03:06pm /tty10
RePrinted **** Invoice **** on 0

DAVIDB 11/04/96 11:41am /tty10
RePrinted **** [nvoice **** on 0

An example of the [-Descriptor screen for a dictionary item using this subroutine would
look like:

I-Descriptor Program Maintenance
File Mame : AR
Dict ID : INV.PRINT

SUBR(’DICT.AR.LEDL.PRT’ ,RID)

DICT.AR.PAY.DAYS
This subroutine is used from the AR file. It will return the number of days it took for the
customer to pay the invoice.

I-Descriptor Program Maintenance
File Name :

AR
Dict ID : PAYMENT_DAYS
SUBR("DICT.AR.PAY.DAYS™)

DICT.AR.PRT.STAT

From the AR file this routine will display the print status of a transaction.

I-Descriptor Program Maintenance
File Name :

AR
Dict ID : PRT.STATUS
SUBR(*DICT.AR.PRT.STAT’)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 231

&

ACTIVANT
DICT.AR.SALE
Basically will return a « 1 » for each transaction that is an AR sale. Items excluded from
this are Journal entries, first generation of Transfers, etc.

I-Descriptor Program Maintenance
File Mame : AR
Dict ID : AR.SALE

SUBR(’'DICT.AR.SALE’)

DICT.AR.UNPD.AMTS

This subroutine will return unpaid amounts for split payments.

I-Descriptor Program Maintenance
File Name : AR
Dict ID : RAHT.TO.PAY

SUBR(’DICT.AR.UNPD.AMTS")

DICT.AR.UNPD.DISC

This subroutine will return the discount amount to pay on split payments

I-Descriptor Program Maintenance
File Name : AR
Dict ID : DISC.TO.PRY

SUBR{ 'DICT.AR.UNPD.DISC")

DICT.ASUB.AMT
SUBROUTINE (AMT,GLCODES)

This routine requires the GL Code for which you want to report amounts. Also, this
routine calls in another routine called ASUB.GET.AMT.

This routine is design to return balance for a given set of auto-postings account (AR/AP/UBAP)
Generally only one account in passed in and the AR record is processed parsing through strings
in ARREC<4> and AREEC<5> filtering by start date, end date, branch, and VM positions

finally returning a balance in AMT variable
%

*¥**% AMT - Total balance for GAS account for given selection [OUT]

*#% ARREC - Dynamic AR record [IN]
*¥#% POS - Start and end @VM positions for balance calculation (IN)
BRCHS - Valid Branches (IN)

*#% GAS - will represent GL Account #s to return the GL balance (IN)
(Could be MV)

*#**% SDT - Start Date (IN)
***% EDT - End Date (IN)
ADDL.DATA - Additional information (IN)

*#% @AMI1 = CN - Bill-To customer (UBAP only)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 232

&

ACTIVANT

An example of an [-descriptor using this subroutine:

I-Descriptor Program Maintenance
File Name : AR
Dict ID : A/R

SUBR{’DICT.ASUB.AMT’, AR’)

DICT.ASUB.ARBAL
This routine calls in another routine called AR.GET.BAL
The AR.GET.BAL calls in another routine called ASUB.GET.BAL

An example of an [-descriptor using this subroutine:

I-Descriptor Program Maintenance
File Mame : AR
Dict ID : BRBAL

SUBR{’DICT.ASUB.ARBAL ")

DICT.BR.VAL.GET
SUBROUTINE (VAL,BR,PN,ATTB.NO,SVM.NO,LOC.FLAQG)
Subroutine: DICT.BR.VAL.GET

This routine pulls branch specific data from the PROD.BR file or the PROD.CALC.BR file
calling either PRD.BR.GET.VAL or PRDC.BR.GET.VAL to get a specific attribute for a
branch. If no branch is specified then all branches are used.

BR - Branch [IN]

PN - Part Number [IN]

ATTB.NO - Attribute Position [IN]

SVM.NO - Sub-Value Mark [IN]

LOC.FLAG - Flag to set whether to pull from PROD.CALC or PROD.BR [IN]
VAL - Value Returned [OUT]

An example of an I-descriptor using this subroutine is:

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : DAYS_OUT

SUBR{’'DICT.BR.VAL.GET’,’ " ,@ID,11,"",'C’)

DICT.BR.VALS

This subroutine is used with the PROD.LIFO file.

SUBROUTINE (VAL,ATTB)

You need to enter the attribute number that is storing branch specific data as part of this
subroutine.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 233

&

ACTIVANT
DICT.CALC.AVAIL
This routine can only be used when the @id of the file you are working in is the Internal
ID number of the product. Ex. PRODUCT.NOTES, PROD.DYNAM, PRODUCT

%

This dictionary subroutine calculates the available quantity of a given product for selected

branches.
*

An example of an I-descriptor using this subroutine is :

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : AVAIL

SUBR{"DICT.CALC.AYAIL")

DICT.CALC.AVAIL.PN
SUBROUTINE (STK.LEVELS,PN)

This routine can be used from any file for which you can pass in the Internal ID number
of an Eclipse product.

Works the same as DICT.CALC.AVAIL.PN shown above.

An example of an i-descriptor using this subroutine is :

I-Descriptor Program Maintenance
File Name : ENTITY.PN.IDS
Dict ID : AVATIL

SUBR{’DICT.CALC.AYAIL.PN’ ,PN)

DICT.CALC.CDC.AVAIL
SUBROUTINE (CDCAV)
Routine to calculate CDC Availability (Central Distribution Center)

An example of an I-descriptor using this subroutine is :

T I-Descriptor Program Maintenance —{ NI ——
File Name : PRODUCT
Dict ID : AVAIL.CDC

SUBR{"DICT.CALC.CDC.AYAIL™)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 234

&

ACTIVANT
DICT.CALC.CN.SLS
Any file for which you can pass in the Customer’s internal ID can use this subroutine.
This subroutine requires 6 arguments to be entered for it to work. If you want to use the user
defined date range and you are not specifying a specific branch, make sure you load the prompts
on your dictionary item. (Prompts hotkey from dictionary maintenance). The three prompts to
add is the Branch, Starting date and End as of Date.

SUBROUTINE (AMT,RANGE,AVN,BRCHS,SD,ED,CN)

Koo Date Ranges

* 1 = User Defined Date Range
* 2 = MTD Date Range

* 3 =YTD Date Range

* 4 = Fiscal MTD Date Range
* 5 =Fiscal YTD Date Range
Koo AVN Definition

* 1 = Sales

2 = Qross Profit

An example of an I-descriptor you can create using this subroutine is :

I-Descriptor Program Maintenance
File Mame : ENTITY.PN.IDS
Dict ID : CUST.SALES

SUBR{’DICT.CALC.CN.SLS*,"1",’1","","", " ,CUST.ID)

DICT.CALC.PBR.AVAIL

Can only be run from a file where the @ID of each record is the internal ID of the
product. Ex. PRODUCT, PROD.DYNAM and PRODUCT.NOTES

Routine to calculate Pricing Branch’s Availability.

I-Descriptor Program Maintenance —{TON——————
File Name : PRODUCT
Dict ID : AYAIL .PBR

SUBR{"DICT.CALC.PBR.AYAIL")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 235

DICT.CALC.SLS
Can only be run from the ENTITY file

SUBROUTINE (AMT,RANGE,AVN,BRCHS,SD,ED)
Version# 1 - 03/24/1996 - 08:30pm - SCOTTR - **
-------- Date Ranges

1 = User Defined Date Range

2 = MTD Date Range

3 =YTD Date Range

4 = Fiscal MTD Date Range

5 = Fiscal YTD Date Range

———————— AVN Definition
1 = Sales
2 = Gross Profit
3 = Gross Profit Percentage
4 = Cost of Goods Sold

&

ACTIVANT

I-Descriptor Program Maintenance
File Hame : ENTITY
Dict ID . COGS

SUBR{’DICT.CALC.SLS ,1,4,°", ", ")

DICT.CALC.SLS.ST

Can only be run from the ENTITY file and will return values if the ENTITY is a Ship to

customer.

SUBROUTINE (AMT,RANGE,AVN,BRCHS,SD,ED)
———————— Date Ranges

1 = User Defined Date Range

2 = MTD Date Range

3 =YTD Date Range

4 = Fiscal MTD Date Range

5 = Fiscal YTD Date Range

-------- AVN Definition
1 = Sales
2 = Gross Profit
3 = Gross Profit Percentage
4 = Cost of Goods Sold

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : SALES.STOMLY

SUBR({'DICT.CALC.SLS.ST",1,1,""," ", ")

Release 8 UniVerse Data Structures with Report Writer and Mass Load

Page 236

&

ACTIVANT

DICT.CMP.COST.CALC

SUBROUTINE (CMP.COST)

This routine will only work from the AR file.

This will return the cost for the entire generation of the AR record.

I-Descriptor Program Maintenance
File Name : AR
Dict ID : CHP.COST

SUBR{"DICT.CMP.COST.CALC™)

DICT.CONV.CHAR
SUBROUTINE (NEW.STR,OLD.STR,OLD.CHAR,NEW.CHAR)

This routine will convert a string of characters to a new string of characters. You will
need to pass in the data element that stores the string of characters as well as the original
characters and the new characters that should be outputted.

DICT.CONV.VM
SUBROUTINE (VAL,ATTB)

This subroutine will work on any file for a data element that has multiple value string of
information. You need to pass in the Attribute value that you want to convert from multi-value
marks to a “ ““ (space) delimited.

For example, the product file has multiple values in the description. Therefore if |
wanted to return the last word of the description, I would first need to convert the multi-value
marker to a space so that I can count all of the separate words. Once I have completed that task I
can return the last word.

This is useful if you want to pull back the last value in a multi-valued field.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : LAST_WORD

SUBR('DICT.CONV.VH™ ,1);
DCOUNT(@1," "); FIELD(®1,” ", @2)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 237

&

ACTIVANT
DICT.COST.RATIO
SUBROUTINE (PER.QTY,PN)
This subroutine is used from the PRODUCT file and will provide the Per.qty uom that is
located on the price sheet screen from product file maintenance

I-Descriptor Program Maintenance
File HMame : PRODUCT
Dict ID : COST_RATIO

SUBR(’DICT.COST.RATIO ,@ID)

DICT.CRED.CTRL.GET
This routine works off of the ENTITY file and will return the full descriptions of the
credit control parameters that are set for the customer.

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : CREDIT.CTRL

SUBR{’DICT.CRED.CTRL.GET")

and will return:

36557 Print approval required message when
credit limit exceeded

Company checks accepted

Personal checks accepted

DICT.CUS.FAX.NO

This subroutine will do a search in the contacts area of the entity file to find the
terminology “FAX”. It will do a Dcount to count down the number of value markers until it
finds “FAX”. Then it will go to the phone numbers and return the correct phone number that is
next to the FAX.

I-Descriptor Program Maintenance
File Hame : ENTITY
Dict ID : FAX_NUMBER

SUBR{'DICT.CUS.FRAX.NO")

DICT.CUS.NOTES
SUBROUTINE (NTS,NOTE.ID)

This subroutine will go out to the ENTITY.NOTES file and return the note number
specified. This will only work from the ENTITY file.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 238

&

ACTIVANT
DICT.CUS.POINTS
This subroutine needs to know an option that you want to pull back for the Customer
points program. This routine works from the ENTITY file

SUBROUTINE (AMT,OPT)
The options range from 1 to 5.
1 = Ending Balance
2=YTD Earns
3=YTD Use
4 =YTD Adjustments
5=YTD Beg Balance\

DICT.DISB.AMT.GET

Routine to return the amount paid to this vendor in the date range specified
This subroutine can only be used from the ENTITY file.

I-Descriptor Program Maintenance
File Mame : ENTITY
Dict ID : VEND.DISB.AMT

SUBR{’DICT.DISB.AMT.GET")

DICT.EARLIEST.SHPDT
SUBROUTINE (EARLIEST.DATE,OID,GID)

This subroutine will pull back the product’s earliest available date on a transaction if the
order id and the generation id can be passed in. This is pulling back the earliest avail date for the
entire generation.

I-Descriptor Program Maintenance — T Mal—————
File Name : ORDER.QUEUE
Dict ID : EARLIEST .DATE

SUBR(’'DICT.EARLIEST.SHPDT’,0ID,GID)

DICT.ENT.45.AR. AMTS
This subroutine is only used on the Entity file and will pull back the balance greater than or equal
to 45 days and less than and equal to 60 days.

I-Descriptor Program Maintenance —{TIIMI———
. File Name : ENTITY
Dict ID : BAL.&5DAYS

SUBR{"DICT.ENT.45.AR.AHTS™)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 239

&

ACTIVANT
DICT.ENT.ALL.SLS
SUBROUTINE (AMT,STD,EDD,AVN)

This subroutine gets all the sales dollars for a particular customer for all of the user's
authorized branches between the supplied start and end dates.

AMT - Total amount returned.. (OUT)
STD - Start date to get the amounts for... (IN)

EDD - End date to get the amounts for. (IN)
AVN - What dollar amount you want returned. [IN]

AVN =1 : Sales Dollars are returned.
AVN =2 : GP Dollars
AVN=3:GP%

AVN =4 : COGS Dollars

DICT.ENT.AP.AMTS
SUBROUTINE (VAL,VAL.NO)

This subroutine can only be used from the ENTITY file and needs a value number passed in.
The value number is used in another subroutine that is used called AR.PREV.LIST.
Subroutine - AR.PREV.LIST

k
This subroutine will retrieve open AR/AP items for the Customer (CN) and the As of Date
(AOD) passed in and parses out certain data, such as the AR Record Open Balances, Payment
Dates, and GL Branches.

*

CN - Customer Number to get data for. [IN]
AOD - As of Date to get data for. (IN)
AGD - Age as of Date -> Age data as of this date. (IN)

AGT - Aging Balance Summary information, delimited by age bckt (OUT)
IDS - AR Records we picked up for the Customer & As of Date. (OUT)
DTS - G/L Date for the AR Records picked up. (OUT)
BALS - Open Balance for each AR Record passed back in IDS ~ (OUT)
CRS - Credit Amount if the AR Record if it is in fact a credit (OUT)
PDTS - Payment Dates (OUT)
AGS - Aged Buckets that each of the AR Recs fall into (OUT)

- 1 =Future

- 2 =Current

-3 =31-60 Days

-4 =61-90 Days

-5=91-120 Days

- 6 = Over 120 Days

- 7 =Deposits

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 240

&

ACTIVANT
DICT.ENT.AR.AMTS
SUBROUTINE (VAL,VAL.NO)
This subroutine can only be used from the ENTITY file and needs a value number passed in.
The value number is used in another subroutine that is used called AR.PREV.LIST.
See above AR.PREV.LIST for the argument values.

I-Descriptor Program Maintenance
File Mame : ENTITY
Dict ID : 90DAY-+128DAY

SUBR("DICT.ENT.AR.AMTS™,"5") + SUBR("DICT.ENT.AR.AMTS™,"6™)

DICT.ENT.BTST.NAME
SUBROUTINE (NAMES,ATTR)

This subroutine can be used from any file and will return the Bill to and or ship to name
and address if the attribute number for the internal id of the customer is passed in.

I-Descriptor Program Maintenance
File Name : AR
Dict ID : BILLTO_MRAHE

SUBR{’DICT.ENT.BTST.NAME’ ,10)

51012115.004 Frank & Joe Plumbing & Heating
135 SANDY AVENUE
NEW ROCHELLE NY 18300

DICT.ENT.CRLIM.PERC
SUBROUTINE (VAL,VAL.NO)
This subroutine will advise the percentage of the credit limit that is being used.
The value number that needs to be used is 8. This subroutine will only work from the Entity file.

I-Descriptor Program Maintenance
File Mame : ENTITY
Dict ID : CRLIM.PERC

SUBR{"DICT.ENT.CRLIM.PERC","8")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 241

&

ACTIVANT
DICT.ENT.GET.TZ
This subroutine can only be used from the ENTITY file and will return the time zone that
the customer belongs to.

DICT.ENT.INV.CT
SUBROUTINE (INV.CT,NOX)

This routine will return the invoice count. If NOX is specified then it will not include cancelled
invoices.

* INV.CT - Value returned which is the invoice count. (OUT)

*NOX - If null it will include cancelled invoices. (IN)

NOX means no x or no cancelled invoice. By indicating a “1” you are telling the system that
you do not want to see cancelled invoices. This subroutine can only be run from the entity file.

I-Descriptor Program Maintenance
File Mame : ENTITY
Dict ID : INV.CT

SUBR{"DICT.ENT.INV.CT™, ")

DICT.ENT.PAY

Will return the payment amount and can only be used from the Entity file. Need to pass
in the Beginning date and an End As of Date.

I-Descriptor Program Maintenance
File Mame : ENTITY
Dict ID : PAYABLES

SUBR('DICT.ENT.PAY’)

DICT.ENT.PN.XREF.COMP
SUBROUTINE (VAL,REF)

This subroutine will display component information of a Kit item that is assigned to the
Customer Part Number screen in Customer File Maintenance.

CN =FIELD(@ID,"~",1)

XPN = FIELD(@ID,"~",2)

LOC = FIELD(@ID,"~",3)

PN =FIELD(@ID,"~",4)

VAL ="

REEF is either 1 —4. If a product is on the Customer Part number screen with a customer
part number, this routine will return the (1) Component Quantity (2) Component Customer Part
number (3) Component Description (4) Component Comments

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 242

&

ACTIVANT

I-Descriptor Program Maintenance
File Name : ENTITY.PN.IDS
Dict ID : COMP .DESC

SUBR{"DICT.ENT.PN.HREF.COMP™,3)

DICT.ENT.PURCH

This routine can only work from the ENTITY file and will return the dollar amount

purchased from a vendor during a time frame specified.

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : PURCH

SUBR{"DICT.ENT.PURCH")

DICT.ENT.SLS
SUBROUTINE (AMT,STD,EDD,AVN)

This subroutine Gets all the sales dollars for a particular customer for the active branch between
the supplied start and end dates. The active branches come from BR$ which is part of

DICT.COMMON.

If BRS is not set, all authorized branches are used and BRS is set to all authorized branches.

If information for all authorized branches is required, use DICT.ENT.ALL.SLS...

AMT - Total amount returned.. (OUT)
STD - Start date to get the amounts for... (IN)
EDD - End date to get the amounts for. (IN)
AVN - What dollar amount you want returned. [IN]

AVN =1 : Sales Dollars are returned.
AVN =2 : GP Dollars
AVN=3:GP%

AVN =4 : COGS Dollars

I-Descriptor Program Maintenance
File Hame : ENTITY
Dict ID : 2HTH.AGO.COGS

SUBR('DICT.ENT.SLS’, "FM-3/26/YR’, "FM-2/25/YR" ,4)

Release 8 UniVerse Data Structures with Report Writer and Mass Load

Page 243

&

ACTIVANT
DICT.ENT.VAR. AR.AMTS
SUBROUTINE (VAL,SDAYS,EDAYS,EXC.DEP)

*

This routine is used to return a balance for a specified date range.
It uses Br/Tr/All and End/As Of Date

*

VAL - The AR balance returned (OUT)
SDAYS - The number of days back to start the date range [IN]
EDAYS - The number of days back to end the date range (IN)

EXC.DEP - Exclude deposits "" or 0 =NO 1 = yes exclude deposits (IN)

DICT.ENT.VC
This routine is used only in the ENTITY file and will return a “V” if Vendor or a “C” if
customer.

DICT.GET.AVAIL.BR
This routine will work from the PRODUCT file and will return the products available
quantity based upon the branch provided.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : AVAIL.BR

SUBR{"DICT.GET.AVYAIL.BR™)

DICT.GET.AVAIL.CREDIT
SUBROUTINE (CRAVAIL,CN)
This routine will calculate the amount of Credit that the given customer (CN) has available. Also

returns the customers past due and other amounts due, as well as their credit limit. This routine
calls in GET.AVAIL.CREDIT

I-Descriptor Program Maintenance
File Hame : ENTITY
Dict ID : AVAIL_CREDIT

SUBR{’DICT.GET.AYAIL.CREDIT’ ,@ID)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 244

&

ACTIVANT
DICT.GET.BASE
SUBROUTINE (BASE,TYPE)

Used in the PRODUCT file. Must enter the basis name so that the correct base amount is
returned. Returns base amount for a product.

BASE - base amount of type is null, or base/per if TYPE is 1 [OUT]
TYPE - flag to determine BASE above (IN)

PN =@ID

BRS = DICT.COMMON<I>
DT = DICT.COMMON<4>
BASIS = DICT.COMMON<7>

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : BRASIS

SUBR{"DICT.GET.BASE™,"")

I-Descriptor Program Maintenance —JTNM——
File Name : PRODUCT
Dict ID : REP-COST

SUBR(’DICT.GET.BASIS’ ,"REP-COST™)

DICT.GET.BASE.BR

SUBROUTINE (VAL)

This routine is used from the PRODUCT file. This routine is smart enough to get the base
amount per branch if using branch specific price sheets. The name of the local basis value comes
from the dictionary common data.

PN =@ID

BRS = DICT.COMMON<I>
DT =DICT.COMMON<4>
BASIS = DICT.COMMON<7>
VAL ="

IF DT =" THEN DT=DATE()
BRN =DCOUNT(BRS,VM)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 245

&

ACTIVANT
DICT.GET.BASE2
SUBROUTINE (BASE,PN,BR,DT)
This routine can be run from a file where the internal id of the product is available to pass in.
This subroutine is smart enough to pull the sheet that is in effect as of the date specified.

I-Descriptor Program Maintenance
File Hame : PSUB
Dict ID : BRASIS

SUBR{"DICT.GET.BASE2" ,FIELD(RID, ™' ,1) ,FIELD(@ID, ™' ,2) ,FIELD(RID, ™", 3))

I-Descriptor Program Maintenance
File Name : WMATRIX
Dict ID : BRASIS

FIELD(@ID,""™,3); IF NUM(@1) THEN SUBR{"DICT.GET.BASE2",@1) ELSE "~

DICT.GET.BASE3
SUBROUTINE (BASE,PN,BR)

This routine will pull the current price sheet. This routine returns the Price Base based on PN,
BR and as of date which passed by common variable DICT.COMMON<4>,

* BASE - BASE Amount [OUT]
* PN - ProductID [IN]
* BR - Branch ID [IN]

I-Descriptor Program Maintenance —TNNIIN———
. File Name : MATRIX

Dict ID : BASIS.ASOF
FIELD(@ID,""™,3); IF NUM{@l) THEN SUBR({"DICT.GET.BASE3",@1) ELSE "~

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 246

&

ACTIVANT

DICT.GET.BASIS

Used only from the PRODUCT file.

This will get the basis value using the Global Basis. Therefore this one is smart enough to map
the global basis to the local basis it is pointing to in price line maintenance to return the correct

base amount.

SUBROUTINE (PBASE,GBASIS)

This routine is called by I-descriptors in Eclipse Dictionaries to get the local price base

PBASE - The price base corresponding to the Global Basis ouT
GBASIS - Global Basis you want the price base for [IN]

I-Descriptor Program Maintenance —iTNNINI————

File Name : PRODUCT
Dict ID : PURC-BRERK

HSUBR("DICT.GET.BASIS", "PURC-BREAK™)

DICT.GET.BR.COST
SUBROUTINE (VAL,CST.BN)
This routine will work from the PRODUCT file and calls in another subroutine. You must call

in the cost basis name that you are looking to have returned.

This routine is used to return the COST (arg) for the given Cost Basis requested by the user via

the cost basis #. The Product Log will be searched for the price for the given As Of Date /As Of
Time and assign the cost <= to that date. If there is no pricing information for the product found
in the product log, it will just return the current cost by calling GET.BASE.

NOTE:
Cost Basis Number Association to PROD.LOG

COST.BN = BASIS

8 =1 = Average Cost

9 =2 = Last Cost

22 =3 = Average Landed Cost

21 =4 = Landed Cost

23 =5 = Frozen Average Cost

24 = = Frozen Last Cost

26 = = Frozen Average Landed Cost
27 =8 = Frozen Landed Cost

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 247

&

ACTIVANT
DICT.GET.BR.NAME
SUBROUTINE (BR.NAME,BR)
You must provide the branch number. If a file has an attribute that is storing the branch the
attribute will be passed in. That will then return the name of the branch.

I-Descriptor Program Maintenance
File Hame : QUAL.LOG
Dict ID : BR.NAME

SUBR{"DICT.GET.BR.NAME™,BR)

DICT.GET.BYLINE.VALUE
SUBROUTINE (VAL,ATTB)

This will return branch specific buy line data. Specify the attribute number from the
BUY.LINE.BR file that needs to be passed back.

I-Descriptor Program Maintenance
File Hame : BUY.LINE
Dict ID : GRACE

SUBR{’DICT.GET.BYLINE.YALUE’ ,8)

DICT.GET.CLASS
SUBROUTINE (PRICES,QSIGN,PRC.UOM)

*

This subroutine returns the price of a product for a given date, branch, Qsign and price class.. If
more than one branch is specified in the VM delimited list of BRS from DICT.COMMON<I>, a
corresponding list of prices is returned..

If the PRC.UOM flag is not passed in, the price is returned per 1 of the lowest UOM.
*

PRICES - List of Prices for the Product. (OUT)

QSIGN - Type of price requested...(-1) - Sell price [IN]
(1) - Buy price

PRC.UOM - Flag to return the price for the current pricing (IN)

unit of measure..
%

COMMONS:
@ID - Id of the currrent product record. (READ)
DICT.COMMON - Where the Branches, date and Price class (READ)
are stored.
JUST ABOUT EVERY ARRAY (MODIFIED)
PRICES ="
PN =@ID

BRS =DICT.COMMON<I>
PRC.DATE = DICT.COMMON<4>

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 248

&

ACTIVANT
CLASS = DICT.COMMON<5>

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : CLASS.SELL.PRICE

SUBR{’DICT.GET.CLASS ,’-1","")

DICT.GET.CONTACT.ATTB
SUBROUTINE (VAL,CN.IDS,ATTR1,ATTR2,MVAL,SVAL)

This routine is excellent for a custom file that displays contacts from the contact file.
This will get two attributes from the Contact File and will concatenate them together (ie. First
Last Name). This will work for multiple contact ids passed in a multi-valued list.

VAL - Attributes concatenated together from contact file [OUT]
CN.IDS — Multi-valued list of contact ids [IN]
ATTRI - First contract Attribute to be concatenated [IN]
ATTR2 - Second contact Attribute to be concatenated [IN]
MVAL - Multi Value position

SVAL - Sub-value position

DICT.GET.CUS.LSHP.DT

SUBROUTINE (VAL,CN,PN)
Dictionary subroutine that will allow you to pass in a customer ID (Eclipse Internal ID) and
Eclipse internal PN and it will pass back the last ship date (VAL)

I-Descriptor Program Maintenance
File Name : ENTITY.PN.IDS
Dict ID : LAST_SHP_DT

SUBR{ ' DICT.GET.CUS.LSHP.DT' ,FIELD(@ID, ™", 1) ,FIELD(@ID, =’ .4))

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 249

&

ACTIVANT
DICT.GET.CUST.PN
This routine works from the ENTITY.PN.IDS file return the customer part number, product
description and internal eclipse product id when running for a particular customer.

SUBROUTINE (DISPS,VAL)

sk sk sfe sk sk sk sk sk sk sfe sk sk sk sk sk sk sfe sk sk sk sk sk sfe sk sk skeosk sk skeoskeosk sk sk
* VAL =1 Customer Part Number *

* VAL =2 Product Description *

* VAL =3 Product @ID *

sk sk sfe sk sfe sk sk sk sk sfe sk sk sk sk sk sk sfe sk sk sk sk sk sfe sk sk skeosk sk skeoskeosk sk sk

CN = FIELD(@ID,~,1)

DICT.GET.CUST.PN.PRD

SUBROUTINE (VALS,OPT,PN)

This subroutine will need to have the option and the Product ID number passed in. It can be used
from the PRODUCT file to return customer part numbers.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : CUST.PN

SUBR{"DICT.GET.CUST.PN.PRD",1,@ID)

DICT.GET.CUST.PN.PSUB

This routine works from the PSUB file and will return the customer’s part number or the product
description, which ever value is passed in to the subroutine.
SUBROUTINE (DISPS,VAL)

* VAL =1 Customer Part Number *
* VAL =2 Product Description *

I-Descriptor Program Maintenance
File Mame : PSUB
Dict ID : CUST.PH

SUBR{ DICT.GET.CUST.PN.PSUB", 1)

DICT.GET.CUSTOMER.CREDIT
SUBROUTINE (VAL,TYPE)

This routine can only be used from the ENTITY file and needs to have the type of credit
limit you are looking to pass back. Valid types are:

PAST.DUE

TOTAL.AR

JOB.TOT

CREDIT.LIMIT

PAST.DUE.LIMIT

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 250

&

ACTIVANT

I-Descriptor Program Maintenance
File Mame : ENTITY
Dict ID : CR_LMT_JOB_TOTAL

SUBR(’'DICT.GET.CUSTOMER.CREDIT , JOB.TOT")

DICT.GET.DISCOUNT
SUBROUTINE (DISC.AMT)

Returns true discount amount from AR record by totaling all of the discounts on this AR ID.
This routine can only be used from AR file.
DISC.AMT - Total Discount Amount Returned (OuT

* NOTE: @RECORD is assumed to be the AR file.

TI-Descriptor Program Maintenance —{iAN——
File Name : AR

Dict ID : DISC.TRAKEN
SUBR{ ' DICT.GET.DISCOUNT)

DICT.GET.ENT.CONTACTS

SUBROUTINE (VAL,CN,PASSER)
Because you are passing in the CN number, this subroutine can be used from any file for which
the ENTITY id can be passed in. You must fill in the “passer” which is listed below as to the

type of information from the contact file you want to return.
*

This subroutine returns a multi-valued list of contact information from the contact file for a
given entity. The information returned is based upon the value passed into the routine in the
PASSER argument. For example, if PASSER<1> is 'ID', then the return list contains a list of
contact IDS for the entity.

This routine is currently only called from CONTACT LIST I-Descriptor in ENTITY.
*

VAL - Multi value list of information specified in PASSER [OUT]
CN - Entity ID [IN]
PASSER - Specifies data to return as follows: [IN]
Numeric or comma-delimited numeric - Attribute, Value, Sub-value to retrieve
'ID' - Returns list of contact IDS for this Entity
'NAME' - Returns list of full contact names (first middle last)
'LNAME' - Returns list of full contact names (last, first middle)
'PHONE# - Returns list of phone number defined where # is
(ex: PHONEI returns list of first number of every contact)
'PDESC#' - Returns list of phone descriptions at # specified
'PTYPE=TYPE' - Returns phone number that corresponds to TYPE where TYPE defines what
type we're looking for.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 251

&

ACTIVANT

I-Descriptor Program Maintenance
File Hame : ENTITY
Dict ID : CONTACT_LIST

SUBR(’DICT.GET.ENT.CONTACTS’ ,@ID, ID")

DICT.GET.ENTITY.ATTR

SUBROUTINE (VAL,CN,ATTR,MVAL,SVAL)

If you have then entity id, this subroutine can be used from any file. You can specify the
attribute number, multi-value and sub-value position to pull back.

I-Descriptor Program Maintenance —{ U NI———
I File Name : MATRIX
Dict ID : CUST.INSIDE

SUBR("DICT.GET.ENTITY.ATTR",CN, &4, "" ")

DICT.GET.ENTITY.BR.VAL
SUBROUTINE (VAL,ATTR,USE.CN)

This routine will return the branch specific value for the attribute passed in from the
ENTITY.BR file. If branch is "ALL", we will retrieve the value from the ENTITY file. The
attributes are defined control records, CUS.BR.CATEGORY and EN.BR.CATEGORY,
depending upon entity type.

* VAL - Value passed out stored in record [OUT]
* ATTR - Attribute to retrieve value for in ENTITY.BR [IN]
* USE.CN - Customer to get data for (blank = @ID) (IN)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 252

&

ACTIVANT
DICT.GET.FIRST.SOLD
SUBROUTINE (FIRST.VAL,OPT,PN)

Option is either “” or “1”. *“” will return the first purchase cost and “1” will return the first
purchase date. This subroutine can be used on any file where you can specify the internal id
number of the product.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : FIRST.COST

SUBR{’DICT.GET.FIRST.SOLD’, 2’ ,@ID)

DICT.GET.ID.LIST
SUBROUTINE (ID.LIST,FILENAME,ID,ATTR,CONV)

Returns a list of values separated with a value marker.

I-Descriptor Program Maintenance
File Hame : ENTITY
Dict ID : EXP.NAME

SUBR{’DICT.GET.ID.LIST , ENTITY ,@ID,’56°,°6G171");
TRANS("GENLED™,@1,"3","X")

DICT.GET.LAST.PURCH
SUBROUTINE (VAL,OPT,PN,BR,PRC.DATE)

IF OPT =1 returns LAST.DATE else returns LAST.COST
This routine will return a null LAST.DATE if there is no last P/O
Found...

I-Descriptor Program Maintenance
File Name : PROD.DYNAH
Dict ID : LAST.PURCH.DATE

SUBR{ ' DICT.GET.LAST.PURCH ,1,@ID,@VH, ")

DICT.GET.LAST.REC
SUBROUTINE (LAST.VAL,OPT,PN)
This routine can work from any file where you have the internal id number of the product.
Opt 1 =LAST.DATE
Opt 2 = LAST.PURCH

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : LAST.PO.DATE

SUBR("DICT.GET.LAST.REC™,"1",@ID)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 253

&

ACTIVANT
DICT.GET.LASTDATE
SUBROUTINE (LPDATE)
Can only be run from the ENTITY file and will return the last transaction date for the entity.

I-Descriptor Program Maintenance
File Mame : ENTITY
Dict ID : LAST.PAY.DT

SUBR({ ' DICT.GET.LASTDATE ")

DICT.GET.LASTPAY
SUBROUTINE (LPAMT)
Can only be run from the ENTITY file and will return the last payment amount for the entity.

I-Descriptor Program Maintenance
File Name : ENTITY
Dict ID : LAST.PAY.AMT

SUBR(’DICT.GET.LASTPAY ")

DICT.GET.LED.LOG.VALUE

SUBROUTINE (VAL,ATTB)

OID = FIELD(@ID,".",1)

GN =DCOUNT(@ID,"."
This subroutine requires the attribute number from the LEDGER.LOG file you want to pull back.
This subroutine works from the AR or the ORDER.QUEUE file.

I-Descriptor Program Maintenance —{RTILILY
File Name : PSUB
Dict ID - MANIFEST

HSUBR("DICT.GET.LED.LOG.YALUE" ,17)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 254

&

ACTIVANT
DICT.GET.LEDGER
SUBROUTINE (VAL,OID,GEN,ATTB)
This routine is used from the AR file to return data from the LEDGER file. The order id and
generation need to be passed in as well as the attribute number from the ledger file that you want
to return. There are some other ATTB types that can be entered in lieu of an attribute number to
pull back line item information.

LI.SQTY = Line item ship quantity

LI.LOQTY = Line item order quantity

LI.DESC = Line item description

LI.CT = the total number of line items on the generation for the AR record
LI.PRCLN = line item price line

LI.PRCEXT = Line item ship quantity extended price.

LI.UNIT = Line item unit price

LI.CSTEXT = Line item ship quantity extended cost of goods sold cost
LI.COMEXT = Line item ship quantity extended commission cost.
LL.TYPE = line item product type

LI.PN = Line item internal id number

LI.DMD = Line item monthly demand

LI.ONHAND = Line item on-hand value

I-Descriptor Program Maintenance
File Name : ORDER.QUEUE

Dict ID : PROD.DESCS
SUBR('DICT.GET.LEDGER.YALUE’, LI.DESC’)

DICT.GET.LEDGER.AMT
SUBROUTINE (AMT,SP.ID,MULT)

Standard posting ids from the ledger file. This can work from the AR

Pass in the Standard posting id and the dollar value posted will appear. This will also
want to know what multi-value you want.

I-Descriptor Program Maintenance
File Hame : AR
Dict ID : TOTAL . AMT

SUBR{’DICT.GET.LEDGER.AMT’, AR’ ,1)

DICT.GET.LEDGER.AMT.PQ
SUBROUTINE (AMT,SP.ID)

This routine will pull back all of the postings to a standard posting you identify. This
subroutine works from the PRINT.QUEUE file.

I-Descriptor Program Maintenance
File Name : PRINT.QUEUE
Dict ID : TAH.AMT

SUBR{’DICT.GET.LEDGER.AMT.PQ", 'TAX")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 255

&

ACTIVANT

DICT.GET.LEDGER.BASE
SUBROUTINE (VAL)

*

This is a dictionary routine that is designed to find the value of a particular basis from the price
sheet based on the branch, date, and basis that is passed in through a common dictionary array
for each item found for specific orders within the ORDER.QUEUE file

k

BRS =DICT.COMMON<I>
DT =DICT.COMMON<4>
BASIS = DICT.COMMON<7>
IF DT =" THEN DT=DATE()

DICT.GET.LEDGER.DET.VALUE
SUBROUTINE (VAL,OID,LDID,GID,ATTB)

Get a ledger detail value from the LEDGER.DET file. If Generation ID (GID) is null it will just
get the entire value (attribute number)... GID can be the INVN (LENGTH = 3) or the Generation
ID (LENGTH =4)

This subroutine can work from the ORDER.QUEUE, and the PSUB file.

'ﬁ' I-Descriptor Program Maintenance — (I Iall—————

File Name : PSUB
Dict ID : REASON.CODE

SUBR{ ' DICT.GET.LEDGER.DET.VALUE ,FIELD(EID, ™' ,4&) FIELD{@ID, ™" ,6),
FIELD(@ID," °,5)"R%3", 46")

DICT.GET.LEDGER.FGHT

SUBROUTINE (VAL,OID,INVN,ATTB)
Returns the freight associated with the invoice.
Must pass in the attribute. (36)

I-Descriptor Program Maintenance — NI ———
1 File Name : PSUB
Dict ID : BILL.OUT.FGHT
SUBR{"DICT.GET.LEDGER.FGHT",0ID,INWYN "R%3",4)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 256

&

ACTIVANT

DICT.GET.LEDGER.LOG
SUBROUTINE (VAL,ATTB)

This will return information from the LEDGER.LOG file and can be used from the AR

and the ORDER.QUEUE file

File Name : ORDER.QUEUE
Dict ID : PRT

I-Descriptor Program Maintenance

SUBR({’DICT.GET.LEDGER.LOG’,9)

DICT.GET.LEDGER.VALUE

SUBROUTINE (VAL,ATTB)

This dictionary works from the PSUB, LEDGER, AR or the ORDER.QUEUE file. Specify the
attribute number from the LEDGER file that you want to pass back. The attribute can also be a
code to pull back different information.

LI.PN will pull back the Line Item Part number.

LL.SQTY will pull back the line item ship quantity

LI.SQTY.PER will pull back the uom for the ship quantity.

LI.OQTY pulls back the line item open quantity

LI.OQTY.PER pulls back the uom for the open quantity.

LI.DESC pulls back the description of the line item.

LILLENT# pulls back the customer part number (if customers are assigned part numbers in
the customer/vendor part number screen)

LI.PRCLN pulls back the price line for the item on the order.

LI.PRCEXT pulls back the extended price for the item on the order

LI.UNIT pulls back the unit price for the item on the order

LI.CSTEXT pulls back the extended cost of the item

LI.COMEXT pulls back the unit cost of the item

LIL.TYPE pulls back the sales quantity type such as tag, defective, etc.
LI.ONHAND pulls back the product’s on-hand quantity.

LI.ONHAND.PER will display the unit of measure for the on-hand quantity.
LI.PN.STK.FLAG displays the branches stk flag from the Primary inventory
maintenance screen. (-=“";1=Y ;0=N)

LI.PN.BUY.ID displays the user id of the buyer for the items on the transaction
LI.ONPO displays quantity on a purchase order for the line item..

LI.ONPO.DT displays the expected receiving date of the purchase order
LI.ONPO.PER displays the unit of measure for the quantity on order from the po.
LI.ON.XFER displays the quantity on a transfer.

LI.ON.XFER.PER displays the unit of measure for the quantity on transfer
LI.TAGDT displays the date the tagged purchase order or transfer is expected to be
received in.

TV.NAME pulls back the full name of the writer of the transaction
TV.BFLW.DT pulls back the bid follow-up date for the transaction.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 257

&

ACTIVANT

I-Descriptor Program Maintenance
File Name : ORDER.QUEUE
Dict ID : GROUP

SUBR{’DICT.GET.LEDGER.YALUE’ ,51)

DICT.GET.LEDGER.VALUE.PQ
Similar to the previous subroutine, this one can only be used from the PRINT.QUEUE file.
Enter the attribute number from the LEDGER file you wish to pull back or use one of the
following codes instead:
e LLSQTY = line item sales quantity
LI.OQTY = line item open quantity
LI.DESC = line item description
LI.PRCLN = line item price line
LI.PRCEXT = line item extended price
LI.CSTEXT = line item extended cost of good sold cost
LI.COMEXT = line item extended commission cost
LL.TYPE = line item sales quantity type
LI.PN = line item part number
LI.DMD = line item monthly demand
LI.ONHAND = line item on-hand
TV.NAME = Full name of the writer
TV.BFLW.DT = bid follow-up date

DICT.GET.MATRIX.DATES.VAL

SUBROUTINE (VAL,ATTR)

This dictionary can only be used from the Matrix Dates file. It returns an attribute number you
specify.

I-Descriptor Program Maintenance —ENRION—————
. File Name : MATRIX
Dict ID : ORIG.EXP.QTY
SUBR("DICT.GET.MATRIX.DATES.YAL",5)

DICT.GET.MATRIX.VAL

SUBROUTINE (VAL,ATTR,MVAL)

This subroutine is used in the matrix file and will return the attribute number and multi-valued

position you specify.

In the ATTR argument you can also pass in the following codes:
e ALPHA

SLSM

SLSM.IN

NAME

INDEX

MISC.WORK

MISC.WORK,CUST.NAME

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 258

&

ACTIVANT

e DATES

e TYPE

e ABBR

e BRANCH

I-Descriptor Program Maintenance
File Hame : MATRIX
Dict ID : QUOTE.TITLE

SUBR{ 'DICT.GET.MATRIK.VAL , MISC.WORK’, 1)

DICT.GET.MISC.DATA.VAL
SUBROUTINE (VAL,KEY,ATTR,MVAL,SVAL)

This subroutine will pull back the attribute, multi-value and sub-value from the MISC.DATA

file. You are required to specify the key to the record for which you need to extract data.

I-Descriptor Program Maintenance —JILnON————
File Name : MATRIA
Dict ID : QUOTE .CUST.NO

SUBR{"DICT.GET.MISC.DATA.VAL™ QUOTE.KEY.2,"","")

DICT.GET.ML.CUR.VAL
SUBROUTINE (VAL,REC.ID)
Returns the current MAINT.LOG value

I-Descriptor Program Maintenance — IO
File Name : MAINT.LOG
Dict ID : CURRENT . VAL

“SUBR(“DICT.GET.HL.CUR.VAL" @ID)

DICT.GET.NO.LOCS

SUBROUTINE (VALS)

This subroutine works from the PRODUCT, or PRODUCT.NOTES file and will display
products that do not have a bin location in a branch. The prompt hotkey in dictionary
maintenance must prompt for a branch.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : NO.LOCS

SUBR("DICT.GET.NO.LOCS™)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 259

&

ACTIVANT

DICT.GET.PRD.XFER.HITS
SUBROUTINE (VAL, PN, OPT)
This is a custom routine which will loop through all of the brs for a start and end date and add up
the number of hits for xfers... This subroutine needs to have the internal ID of the Product.
Therefore it can only be run from the PRODUCT, PRODUCT.NOTES and PROD.DYNAM
files where the key is the Product’s internal ID number. You can fill in either option 1 or 2.
Option 1 = Hits and Option 2 = Qty

VAL ="

BRCHS = DICT.COMMON<I>

ST.DT =DICT.COMMON<3>+0

END.DT = DICT.COMMON<4>

I-Descriptor Program Maintenance —{TTMON—————
File Hame : PRODUCT

Dict ID : KFER.HITS
HSUBR(’DICT.GET.PRD.HFER.HITS’, @ID, '17)

DICT.GET.PREV.CNT

This subroutine is run from the product file and will return the previous on-hand

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : ONHAWD.BR

SUBR{"DICT.GET.PREY.CNT")

DICT.GET.PREV.ONHAND

This subroutine will return the on-hand value for a product for a given date. This subroutine calls
in another subroutine called GET.PREV.ONHANDS. This routine works from the Product File,
Prod.dynam file as well as the product.notes file.

The prompts need to be as of date and Branch/Tr/All

I-Descriptor Program Maintenance
File Mame : PRODUCT
Dict ID : PREV.ONHAND

SUBR{"DICT.GET.PREV.ONHAND")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 260

&

ACTIVANT
DICT.GET.PREV.ONHAND.TYP
SUBROUTINE (TOT.QOH,QTYPES,NEG,INPROCESS)

* Subroutine: DICT.GET.PREV.ONHAND.TYP
When using this subroutine you need to supply what types of location (listed below), whether to
include negative quantities as well as in-process quantities.

* Calc ONHAND for branches & as of date in DICT.COMMON

* TOT.QOH - Total quantity on-hand for location types
*QTYPES - Types of location

*NEG - Include negative quantities

* INPROCESS - Include in-process quantities

* QTYPES:

S - Stock

T - Tagged

F - DeFective

R - Review

O - Overstock

L - DispLay

C - Consignment
NEG & INPROCESS:

O - Only

E - Exclude

e null for include

¥ % K K K ¥ K K K *

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : OH.TYPE

SUBR("DICT.GET.PREYV.ONHAND.TYP",)

DICT.GET.PREV.ONHANDS

SUBROUTINE (OH,PN)

This routine can be called from anywhere rather than just the PRODUCT file to get previous on-
hands - Pass the eclipse PN in the PN field. It will get the branches and effective dates from
common and pass back the on-hand in OH variable...

DICT.GET.PRNK

SUBROUTINE (RANK,PN,BR)

This routine can be used to pull back the Rank of an item in a branch. The product’s internal ID
needs to be passed in, so this can be used from any file where you have this information to pass
into the subroutine.

You also need to pass in the Branch number you are looking to retrieve the rank for, otherwise
the system will pull back branch 1’s rank.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 261

&

ACTIVANT

I-Descriptor Program Maintenance
File Hame : QUAL.LOG
Dict ID : PRNK

SUBR{’DICT.GET.PRNK’ ,BRECORD<8>, BRECORD<12>)

DICT.GET.PROD.INFO
SUBROUTINE (VAL,PN,OPT)
Version# 1 - 03/24/1996 - 08:31pm - SCOTTR - **
VAL ="
BRS =DICT.COMMON<I1>
BRN = DCOUNT(BRS,VM)
SD = DICT.COMMON<3>
ED =DICT.COMMON<4>
Y ou must supply the part number in question and the option to pull back
AVEQOH = Average quantity on-hand
SLS = sales quantity
SLS$ = Sales dollars
COGS = Cost of goods sold

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : AVEQOH

SUBR{’DICT.GET.PROD.INFO’,@ID, "AVEQOH™)

DICT.GET.PUD

Routine to get attb 5 of PU.IDX file and wrap to 35 characters

When you do an auto price update the description is written to the pu.idx file and is stored in
attribute 5. This subroutine is used to display the auto price update description instead of the
product’s description in the product file.

I-Descriptor Program Maintenance —{HIRAN—
File Name : PRODUCT
Dict ID . PUD

‘SUBR("DICT.GET.PUD")

DICT.GET.RANK

SUBROUTINE (RANK,CN)

This routine pulls back the customer’s rank. This routine can be run from any file where you can
pass in the key to the ENTITY file.

I-Descriptor Program Maintenance
File Mame : QUAL.LOG
Dict ID : VRHK

SUBR(*DICT.GET.RANK' ,VEND)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 262

&

ACTIVANT
DICT.GET.VAL
SUBROUTINE (ANS,FILENAME,ID,ATTR,VAL,SVAL)
This subroutine can be used from any file. Pass in the filename, the key, attribute number, value
and sub-value you want to pass back.

I-Descriptor Program Maintenance
File Name : ORDER.QUEUE
Dict ID : CARRY.COST%

SUBR('DICT.GET.VYAL’,"LEDGER™,FIELD{ORDER#," .’ ,1}),"87", "1","")

DICT.GLOBAL.RANK.GET
SUBROUTINE (RANK,VAL)

This routine returns the rank at sub-value (VAL) for a given product.

VAL - Subvalue mark [IN]
RANK - Value returned [OUT]

Common Variables - None used in this subroutine.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : GLOBAL . RANK#1

SUBR{’DICT.GLOBAL.RANK.GET ,’1")

DICT.JOB. TRACKING.GET.CMT
If you are running a report from the TRACKING.LOG file, this dictionary will return the
comments back on a report.

I-Descriptor Program Maintenance — NN ————
1 File Name : TRACKING.LOG
Dict ID : COMMENTS

SUBR{’DICT.JOB.TRACKING.GET.CMT, ")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 263

&

ACTIVANT
DICT.LAST.CYCLE.COUNT
SUBROUTINE (LAST.CYCLE.COUNT)
BR = DICT.COMMON<10>
START.DT = DICT.COMMON<3>
END.DT =DATE()

This dictionary will return the last time a product was cycle counted. The branch prompt must
be the Enter Br: not the Branch/Tr/All prompt to work.

I-Descriptor Program Maintenance — T EOI————
I File Hame : PRODUCT
Dict ID : LAST.CYCLE.COUNT

SUBR("DICT.LAST.CYCLE.COUNT")

DICT.LED.LF.GET
I believe this counts the number of products on a transaction when you are writing a report off of
the ORDER.QUEUE file.

I-Descriptor Program Maintenance —TIINI———
I File Hame : ORDER.QUEUE
Dict ID : ORDER.LF

OCONV(SUBR{ 'DICT.LED.LF.GET’ ,@ID), "HRO4")

DICT.LED.WEIGHT.GET
I believe this retrieves the Weight of a transaction from the LEDGER file when you are writing a
dictionary from the ORDER.QUEUE file.

I-Descriptor Program Maintenance
File Name : ORDER.QUEUE
Dict ID : ORDER.WGT

SUBR(’DICT.LED.WEIGHT.GET ,RID)

DICT.LEDL.INFO
SUBROUTINE (VAL,ID,WORD)

Set WORD to Printed or Overcommit etc

This subroutine works from files that have the Order number somewhere in the @ID. Provide
the subroutine with a word from the change log of the transaction and it will return the date,
time, user who did the activity.

I I-Descriptor Program Maintenance —{ NI ——
I File Name : ORDER.QUEUE
Dict ID : BID.CHANGE

SUBR{"DICT.LEDL.INFO",RID, == Bid")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 264

&

ACTIVANT

DICT.MATRIX.PROD.DESC

If the matrix cell is product specific, this subroutine will pull back the description of the product

from the product file.

I-Descriptor Program Maintenance
File Mame : MATRIX
Dict ID : PROD.DESC

SUBR{ 'DICT.MATRIX.PROD.DESC")

DICT.MATRIX.PROD.LINE

This subroutine will pull back the product’s price line.

I-Descriptor Program Maintenance —{TNIOl———

| File Name : MATRIX
Dict ID : PROD.LINE

SUBR{"DICT.MATRIX.PROD.LINE")

DICT.MV.CONV
SUBROUTINE (VAL,ATTR)

*

e This routine will convert VM to spaces in dictionary items. Currently being used in SQL

data warehouse product

DICT.ORD.PT.GET

This routine is used in the PRODUCT file or any file where the @id is the PN. Subroutine to

retrieve the order point value for a product
SUBROUTINE (OPS)
ISWHSE =1
BRS = DICT.COMMON<I1>
OPS ="
MATREAD PRD FROM PRDFILE,@ID ELSE MAT PRD="
PN = @ID

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : OP.BR

SUBR{’DICT.ORD.PT.GET")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 265

&

ACTIVANT
DICT.ORD.QUE.CUSNAME
This subroutine will pull back the customer’s name when used on the ORDER.QUEUE file.

I-Descriptor Program Maintenance
File Mame : ORDER.QUEUE
Dict ID : CUST.NAME

SUBR{"DICT.ORD.QUE.CUSNAHE™)

DICT.PAY.AMT.GET
SUBROUTINE (AMT)

BEG.DT = DICT.COMMON<3>

ASOF =DICT.COMMON<4>
This subroutine works from the ENTITY file and will show the amount the customer owes
during the start and end date specified.

I-Descriptor Program Maintenance
File Mame : ENTITY
Dict ID : VEND.PAY.AWT

SUBR{"DICT.PAY.AMT.GET™)

DICT.PQ.HNDL.FGHT
SUBROUTINE (AMT,TYPE)

* This routine retrieves the various Freight and Handling amounts for and order in
PRINT.QUEUE

* AMT (OUT) - The Freight or Handling amount specified by TYPE
* TYPE (IN) - A string telling this routine what type of total to
* return.

* COMMON VARIABLES

* @ID is used but not changed
The different types you can pull back are the following:
FGHT.IN.BILL
FGHT.OUT.BILL
FGHT.IN.EXPENSE
FGHT.OUT.EXPENSE
HNDL.IN.BILL
HNDL.OUT.BILL
HNDL.IN.EXPENSE
HNDL.OUT.EXPENSE

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 266

&

ACTIVANT

I-Descriptor Program Maintenance
1 File Name : PRINT.QUEUE
Dict ID : HNDL .IN.BILL

SUBR{'DICT.PQ.HNDL .FGHT ', "HNDL .IN.BILL ")

DICT.PRD.ATTR
Retrieves the attributes from the PROD.BR file.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : HITS

SUBR{’DICT.PRD.ATTR’,30)

DICT.PRD.AVG.PRC
SUBROUTINE (AVG.PRC)
*#% SUBROUTINE - DICT.PRD.AVR.PRC

*

This routine calculates the Average Selling Price for the Product whose PN is @ID based on
the Branches, Start Date and End Date specified through SET.COMMON at TCL.

*

*#% AVG.PRC (OUT) - The Average Selling Prices (VM by Branch)

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : AVG_PRICE

SUBR{’DICT.PRD.AVYG.PRC’)

DICT.PRD.AVGSALE

This subroutine will pull back the average sale quantity from the branch specific data.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : AYG_SALE_QTY

SUBR("DICT.PRD.AYGSALE™)

DICT.PRD.BABY.SURPLUS.PT
Subroutine: DICT.PRD.BABY.SURPLUS.PT
%

This routine is an I-descriptor for the PRODUCT FILE to calculate the surplus point for a baby
branch. It uses the mother branches line point days * the baby branches demand/day + the baby
branches economic order quantity. This is very similar to DICT.PRD.SURPLUS.PT except for
the calculation on the baby branches, they use the baby’s line point day.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 267

&

ACTIVANT
DICT.PRD.CMP.COST
SUBROUTINE (REPLCOST)

Routine to display kit item component costs

Variables:
REPLCOST - Individual component cost (Out)

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : CHP.COST

SUBR("DICT.PRD.CHP.COST")

DICT.PRD.CMP.DESC

This subroutine will display the description of the components of a kit item.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : CHP.DESC

SUBR{"DICT.PRD.CMP .DESC™)

DICT.PRD.CMP.LIST

This routine will display the list price of the components of a kit item.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : CHP.LIST

SUBR{’DICT.PRD.CHP.LIST")

DICT.PRD.COSTS
SUBROUTINE (COSTS,ATTR)
Subroutine: DICT.PRD.COSTS

Program is passed a value and pulls this attribute position from the PROD.CALC.BR file which
contains all calculated product information and then returns the result.

COSTS - Result from what is stored PROD.CALC.BR at position ATTR [OUT]
ATTR - Attribute Position [IN]

I-Descriptor Program Maintenance —{THIRAN—
File Name : PRODUCT
Dict ID : LAND.AVG.COST
SUBR({ 'DICT.PRD.COSTS , 28")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 268

DICT.PRD.CUS.ORDERS
SUBROUTINE (ORDATA,VAL,PN,CN)
sk sk s sk s ke s sk sk s sk s ke sk sk sk sk s ke sk sk sk sk s ke sk sk sk sk sk sk skeosk skok skokosk
* VAL =1 ; Open Order ID's *
* VAL =2 ; Required Date *
* VAL = 3 ; Qty pending shipment *
* VAL = 4 ; First line of product desc *
* VAL =5 ; Ship Date

**

&

ACTIVANT

If you can pass in the @Id of the product file and the @id of the customer, you can return any of

the above value numbers.

I-Descriptor Program Maintenance
File Name : ENTITY.PHN.IDS
Dict ID : OPEN.ORDERS

SUBR{*DICT.PRD.CUS.ORDERS" ,1,PN,EN.ID)

DICT.PRD.CUS.SALES
SUBROUTINE (QTY,RANGE,ATTR,SD,ED,PN,CN)

-------- ATTR Definition
3 = Sales

4 = Purchases

5 = Transfers

6 =Sales $

7 =Purch $

8 =Xfer §

9 = Sales COGS $
10 = Sales GP $

11 = Sales GP %

________ Range Definition
User Defined
=MTD

= Fiscal MTD
Fiscal YTD

I-Descriptor Program Maintenance
File Name : ENTITY.PN.IDS
Dict ID : SALES

SUBR{"DICT.PRD.CUS.SALES™,1,3," ", " ,PN,EN.ID)

Release 8 UniVerse Data Structures with Report Writer and Mass Load

Page 269

&

ACTIVANT
DICT.PRD.CUS.SLS

SUBROUTINE (QTY,PN,CN,MODE,ATTR)

BR = DICT.COMMON<I>
SD = DICT.COMMON<3>
ED = DICT.COMMON<4>

This routine is used to get the number of sales of a specific PN during a given period. By
sending in a CN, the programmer is saying they want to know what the sales data for the PN
were for that CN. If there is no CN, the programmer just wants to know in general how many
sales were made for that PN in general. There is also new functionality so that if you send this
routine null BRS, then it assumes you want to know what happened across all pricing branches.

The ATTR parameter informs the subroutine about what aspect of the sales data you are looking
for... The table is as follows:

THIS ROUTINE RETURNS SALES DATA FOR PRICE BRANCH, NOT SHIP BRANCH
ATTR Definition

2 = Transaction Count

= Sales

= Purchases

= Transfers

= Sales $

= Purch $

= Xfer $

= Sales COGS $

10 =Sales GP $

11 = Sales GP %

(e BN I o)WV, [S GRS}

O

PN - The PN that we are interested in... (IN)
BRS - The Pricing branches we are interested in... If
null, then want data for ALL pricing branches. (IN)
RANGE - Ummm... I'll have to get back to you on that.. (IN)
ATTR - The integer trigger that let's the routine know
which specific totals you're interested in. (IN)
SD - The start date of the date range. (IN)
ED - The end date of the date range. (May be null.) (IN)
QTY - The summation of the data that you're looking for. (OUT)
CN - The CN that you are looking for summary data for this PN. (May be null.) (IN)

I-Descriptor Program Maintenance —TNNIIN———
File Mame : PRODUCT

Dict ID : PO.COUNT
SUBR(’DICT.PRD.CUS.SLS ,@ID,"",'P’,2)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 270

&

ACTIVANT
DICT.PRD.EOQ
This routine only works from a file where the Product ID is the key to each record and will pull
back the EOQ per branch.

I-Descriptor Program Maintenance
File Mame : PRODUCT
Dict ID : EOQ

SUBR{'DICT.PRD.EOQ")

DICT.PRD.GET.INFO
SUBROUTINE (VAL,OPT, TYPE)

Works from the PRODUCT file.

The options you can choose are:
LP = Line Point

OP = Order Point

XFER.PT = Transfer Point
DMD = Demand

The different types can be:
WBRS = Warehouse branch
PBRS = Purchasing Branch

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : LN.POINT

SUBR{’DICT.PRD.GET.INFO’,’LP", ")

DICT.PRD.GET.PER

SUBROUTINE (PER.QTY,MODE)

PN = @ID
Subroutine: which calls in another subroutine called DFLT.PER.GET
This returns the correct UoM type and quantity for the given mode.

MODE - UoM mode - S,P,T,A,I (IN)
DFLT.PER - UoM quantity for this mode (OUT)
DFLT.ALPHA - UoM alpha code (OUT)

I-Descriptor Program Maintenance
File Mame : PRODUCT
Dict ID : SALES.PER.UOH

SUBR(’DICT.PRD.GET.PER",’S")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 271

&

ACTIVANT
DICT.PRD.HITS
This routine will find the number of hits calculated using the PSUB file.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : HITS.CALC

SUBR(’DICT.PRD.HITS)

DICT.PRD.INV.MAINT
SUBROUTINE (VALU,OPTN)
This routine calls in the DFLT.PER.GET routine for “P” type (purchasing branch information)

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : HFER.PT

SUBR{’DICT.PRD.INY.MAINT , 1)

DICT.PRD.LASTACT
This subroutine will look through the PSUB file of the selling branch to display the last activity
date of a product.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : LASTACT

SUBR{ ' DICT.PRD.LASTACT ")

DICT.PRD.LASTSALE

This routine will look through the PSUB file for the selling branch to display the last sales order
for an item.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : LASTSALE

SUBR{’DICT.PRD.LASTSALE)

DICT.PRD.LASTSALE.PN

SUBROUTINE (LASTSALE,PN,CN)

This routine allows you to pass in the internal id of the product and the internal id of a customer
to find the last sales transaction for the customer for the item.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 272

&

ACTIVANT
DICT.PRD.LEADDAYS
This routine will obtain the product lead time, however it uses the user’s home branch to give a
better estimate of the lead time that is needed.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : LEADDAYS

SUBR{’DICT.PRD.LEADDAYS ")

DICT.PRD.LOCS

SUBROUTINE (VAL,OPT,LOCN)

sk sk sk ske sk sfe sk sk s ske sk sfe sk sk sk ske sk sk sk sk sk ske sk stk skeoskeoske sl skeoskoskeske sk skeoskoskosk

** OPT =-1: All Loc info if qty # 0

** OPT=0; All Location info

** OPT=1; Location Types

** OPT=2; Location Codes

** OPT =3; Location Tag
You need to pass in the location that you want to display the information. The options above
will determine the information for the location you want to pass back.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : LOCS

SUBR{’DICT.PRD.LOCS .0, ")

DICT.PRD.OH.DS

SUBROUTINE (ANS,DAYS.SUP)
Routine will display a Yes or a No. If the on-hand is less than the days supplied then the answer
will be yes otherwise, no.

I-Descriptor Program Maintenance
File Mame : PRODUCT
Dict ID . OH<14DS

SUBR('DICT.PRD.OH.DS’, 14")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 273

&

ACTIVANT
DICT.PRD.ON.BID

This routine will display the bid(s) a product is on.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : ON.BID

SUBR{"DICT.PRD.ON.BID™)

DICT.PRD.ONHAND
SUBROUTINE (ONH,TYPE)

sk sk s sk s ke sk sk sk s sk s ke sk sk sk sk sk sk sk sk sk sk s ke sk sk sk sk s sk sk skeosk sk skoskeosk skosk skok

** Type : 1 = Total

kok 2 = Stock
*x 3 = Tagged
kok 4 = Other
*ok 5=Al

sk sk s sk s ke sk sk sk s sk s ke sk sk sk sk sk ke sk sk sk sk sk ke sk sk sk sk s sk sk skeosk sk skoskeosk skosk skok

* This gets called from PSUB I-Descriptors sometimes, too.
* So, @ID could be a PSUB ID, not a part number. Either way, this step will yield a PN
from whatever was passed in.

DICT.PRD.ONHAND.LOC

This routine will provide the on-hand value for each location.

I-Descriptor Program Maintenance
File Name : ENTITY.PN.IDS
Dict ID : ONHAND

SUBR{'DICT.PRD.ONHAND.PN", 1" PN)

DICT.PRD.ONHAND.PN

SUBROUTINE (ONH,TYPE,PN)

sk sk s sk s ke sk sk sk s sk s ke sk sk sk sk sk sk sk sk sk s sk s sk sk sk sk s sk s ke sk sk sk skoskeosk skosk skok

** Type : 1 = Total

ok 2 = Stock

*x 3 = Tagged

sk sk s sk s ke sk sk sk s sk s ke sk sk sk sk s sk sk sk sk sk s sk sk sk sk s sk s sk sk sk sk skoskeosk skosk skok
This routine allows you to pass in the part number. It will display the on-hand value for any of
the types specified above.

I-Descriptor Program Maintenance
File Name : ENTITY.PN.IDS
Dict ID : ONHAND

SUBR{ ' DICT.PRD.ONHAND.PN’,*1" PN)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 274

&

ACTIVANT
DICT.PRD.ONHAND.VAL
SUBROUTINE (VAL,TYP)
BRS = SEL.BR
PN =@ID
TYP=1 ; * Stock On-Hand
TYP =2 ; * Tagged On-hand
TYP =3 ; * Stock Committed
TYP =4 ; * Tagged Committed
TYP =5 ; * Stock In PO
TYP =6 ; * Tagged In PO
TYP =7 ; * Stock In Transfer
TYP =8 ; * Tagged In Transfer

I-Descriptor Program Maintenance —iTNNINI————
1 File Name : PRODUCT

Dict ID : STK.COMMIT
SUBR{’DICT.PRD.ONHAND.YAL","3")

DICT.PRD.ONPO

This routine will work from any file where the product id is the key to the record and will pull
back the quantity on an open purchase order for the shipping branch.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : ONPO

SUBR({"DICT.PRD.ONPO™)

DICT.PRD.ONWORK
SUBROUTINE (ONWORK)

* Returns the on work order quantity.
This routine works the same as the ONPO dictionary listed above. Any file for which the
internal id is the product id will display the quantity on a Work Order for the shipping branch.

DICT.PRD.OPEN.ORD
SUBROUTINE (ORDATA,VAL)

* ORDATA - The order information for the product (OUT)
* VAL - The type of information you want passed back in ORDATA (IN)
* NOTE : You must have a prompt on the dict that calls this for BRANCH

* Valid entries for "VAL" :

* VAL =1 - Open Order ID's

* VAL = 2 - Required Date

* VAL = LD# - Ledger detail information from the attb specified by #
* VAL = LED# - Ledger information from the attb specified by #

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 275

&

ACTIVANT
* VAL = STNAME - Shipto Name from the ENTITY in LED(5)<1,GEN>
* VAL = BTNAME - Billto Name from the ENTITY in LED(1)<1,GEN>

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : OPEN.ORD

SUBR(*DICT.PRD.OPEN.ORD’ ,1)

DICT.PRD.OPEN.PO
SUBROUTINE (ORDATA,VAL,PN)

3k st st s s s ok ok ok sk sk sk sk s sk sk sk sk sk sk sk sk s sk sk sk sk ke sk sk sk s sk ok sk ok ke ke sk skeoskosk

* VAL =1 ; Open Order ID's *
* VAL =2 ; Required Date *
* VAL = 3 ; Qty pending receipt *
* VAL =4 ; Receive Date *

sk sk sk sk s ke sk sk sk sk sk s ke s sk sk sk sk s ke sk sk sk sk s ke sk sk sk sk sk sk skeosk skok skokesk

You can pass in the part number and specify the value you want to return with this routine.

I-Descriptor Program Maintenance — i NMIIN————
File Hame : ENTITY.PN.IDS
Dict ID : OPEN.PO.RECY.DATE

SUBR{’DICT.PRD.OPEN.PO’ 4 ,PN)

DICT.PRD.ORD.PT
SUBROUTINE (VAL)

This subroutine returns a VM list of order points for the branches in BRS$. The Network type to
use for the order points is retrieved from the generic dict common prompt. This solves the
problem of having to have three different order point dictionaries for the different purchasing
network types.

* COMMONS:
e DICT.COMMON - Read from - BR$ will get populated if empty.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : ORDER_POINT

SUBR{"DICT.PRD.ORD.PT")

DICT.PRD.PIL
This routine works from a file for which the product id is the key to the records and will display
the product’s projected inventory level.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 276

&

ACTIVANT

I-Descriptor Program Maintenance
File Mame : PRODUCT
Dict ID : PIL

SUBR('DICT.PRD.PIL"," ")

DICT.PRD.PIL.NO.XFER
SUBROUTINE (PIL,PL.DAYYS)
Subroutine - DICT.PRD.PIL.NO.XFER

This Subroutine is used by the "PIL.NO.XFER" Dictionary Item off the Product File. It will get
the Projected Inventory Levels for a Product at each of the Branches set in the COMMON
Variable 'SEL.BR'. If SEL.BR is not set, the User's authorized Branches will be used instead.
For 'Mommy' Branches, the PIL does not include products that will be transferred to Baby
Branches.

PIL - Projected Inventory Level, VM delimited by Branch ~ (OUT)
PL.DAYS - (Not Used)

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : PIL.NO.XFER

SUBR{"DICT.PRD.PIL.NO.XFER"," ")

DICT.PRD.PIL<10DS

From the PRODUCT file or any file that has the Internal product ID as the key to the record, this
routine checks to see if the projected inventory levels are less than 10 days supply. If so, it will
return a Yes.

I-Descriptor Program Maintenance —TNNIIN———
File Mame : PRODUCT
Dict ID - PIL<16D

SUBR(’DICT.PRD.PIL<18DS’)

DICT.PRD.PRICE
SUBROUTINE (VALU,ATTR)

From the PRODUCT file this Subroutine returns the active UOM or Per qty, current for the
AS.OF.DATE in DICT.COMMON<4>, or if not set, the current date.

VALU - The value returned - either UOM or Per Qty (OUT)
ATTR - The attribute you want the value for - either 2 - UOM (IN)
or 3 - Per Qty

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 277

&

ACTIVANT

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : PER.UM

SUBR("DICT.PRD.PRICE™, 2")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 278

&

ACTIVANT
DICT.PRD.SALES
SUBROUTINE (QTY,RANGE,ATTR,SD,ED,INC.DIR,SLS.UM)
For this routine to work you need to pass in the attribute definition and the range definition.
———————— ATTR Definition
3 = Sales Qtys
4 = Purchases Qtys

5 = Transfers Qtys
6 = Sales $

7 =Purch $

8 =Xfer$

9 = Sales COGS$

10 = Sales GP$

11 = Sales GP%

12 = Work Order Qtys
13 = Rental Qtys

14 = Work Order $

15 =Rental $

________ Range Definition
= User Defined
=MTD

Fiscal MTD
= Fiscal YTD

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : MTD.PURCHASES

SUBR{'DICT.PRD.SALES ,2,4.° ", ", ", ")

DICT.PRD.SGRP.BR
SUBROUTINE (SGRPS)

e This program returns all the sell groups a product is in for the branch designated.

I-Descriptor Program Maintenance
File Mame : PRODUCT
Dict ID : SELL.GRP.BR

SUBR("DICT.PRD.SGRP.BR™)

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 279

&

ACTIVANT
DICT.PRD.SHORT.COMM
SUBROUTINE (SHORT.COMM)

Returns the Short Commodity Code that corresponds to the product's
Commodity Code in the Valid Product Commodity Codes control record.

DICT.PRD.SLS

This routine will pull back the product sales using the PSUB file. You can only use this
subroutine from the Product File or a file for which the Product ID is the @id.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : SLS.DEC

SUBR("DICT.PRD.SLS™,"12/01/PY", "12/31/P¥")

DICT.PRD.STK
SUBROUTINE (STKS)

Checks the status of a product in all branches in SEL.BR and returns 1 (YES) if stock and 0
(NO) if not if multiple branches are selected, a multi-value string is returned. It uses the standard
formula which includes implied stock YES/NO logic.

If no branches are selected, all authorized branches are used.

STKS - VM list of stock flags for each BR in SEL.BR.(BOOLEAN) [OUT]

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : STK.¥N

SUBR{’DICT.PRD.STK")

DICT.PRD.SUB.DESC

This routine will display the description of the substitute items a product is linked to.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : SUBS_DESC

SUBR{’DICT.PRD.SUB.DESC’)

DICT.PRD.SURPLUS
From the PRODUCT file or any file that the internal id is the product internal id, this routine will
pull back the surplus amount.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 280

&

ACTIVANT

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : SURPLUS

SUBR{"DICT.PRD.SURPLUS™)

DICT.PRD.SURPLUS.NOXF$
SUBROUTINE (SURPLUSS$,BASIS)

This routine will get the value of a product's surplus, using the
Basis passed in.

Parameters:
SURPLUSS - Value of a product's surplus, Value Mark delimited by Branch.
BASIS - Basis to use when getting Base Price of a product.

I-Descriptor Program Maintenance
File Hame : PRODUCT
Dict ID : SURPLUS.NO.HKFER$

SUBR{’DICT.PRD.SURPLUS.NOXF$' ., ")

DICT.PRD.SURPLUS.PT

This routine displays the surplus point. This routine can only be used from a file where the @ID
is the internal id of the product.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : SURPLUS.PT

SUBR{"DICT.PRD.SURPLUS.PT™)

DICT.PRD.UOM.MULTI
SUBROUTINE (VAL)

This program is used to report qty concatenated to unit of measure written for report writer use.

VAL - Multi-value list of qty: unit of measure (OUT)
DICT.COMMON is loaded when report writer runs. We are using
fld 2 from dict value with is the mv postion for data.

I-Descriptor Program Maintenance —{ U NI———

File Mame : PRODUCT
Dict ID : UOM.MULTI

SUBR("DICT.PRD.UOM.MULTI")

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 281

&

ACTIVANT
DICT.PRD.UOM.QTY

This routine counts how many unit of measures are assigned to an item.

I-Descriptor Program Maintenance
File Name : PRODUCT
Dict ID : UOMQTY

SUBR{"DICT.PRD.UOM.QTY")

DICT.PRDC.BR.GET.VAL
SUBROUTINE (VALUE,PN,ATTB.NO,SUM.TERRS)

This routine is for getting a value from the PRDC.BR file from
[-Descriptors in PRODUCT dictionaries

VALUE - This is the value requested (OUT)
PN - This is the part number that the value is being

- requested for [IN]
ATTB.NO - This is the value being requested [IN]

SUM.TERRS - This is a flag whether to sum to sum the values (IN)
- for the brs in a territory if a territory is
- included in the br list to get values for

Common Variables: DICT.COMMON<2> is used to get the branch(s) that the value is being
requested for

DICT.PRDD.BR.GET.VAL

This dictionary is used in the product file to go out to the PROD.DYNAM file to pull back the
branch specific date. The Prompt that you need on your dictionary for this to work is the Enter
Br prompt, NOT the Enter Br/Tr/All

You need the subroutine to call in the PN and the attribute number that you want to pull back.
Example: Attribute 12 is the date the item was last counted.

SUBROUTINE (VAL, PN, ATTB)

*

*** This routine is used as a wrapper for the dictionary to get values for the dictionary from the

branch specific product array given the id and the attribute.
*

**% Parameters:

**% VAL - The value to return.

*#% PN - The ID to get the VAL from

*#% ATTB - The ATTB # that the user is wanting a value for.

*

*** COMMON VARIABLES:

k% DICT.COMMON<I10> - This is used to get the value for the branch

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 282

&

ACTIVANT

DICT.PRDD.GET.BR.LOC.VAL

SUBROUTINE (VAL,PN,ATTB)

VAL ="

VAL.CT=0

SLOC = DICT.COMMON<6>
This routine will pull back branch specific data relative to the product dynam file.
If you are using this subroutine in a file where the PN is accessible, you must pass that
information. Then specify the attribute number you need to pull back.

DICT.PRDD.GET.BR.VAL

SUBROUTINE (VAL,PN,ATTB,BR,SVM.NO)
Pass in the Part number, attribute from the prod.dynam file you want, branch you are in and the
sub-value number.

I-Descriptor Program Maintenance
File Mame : PRODUCT
Dict ID : ONHAND.LOC

SUBR{"DICT.PRDD.GET.BR.VAL" ,@ID,1,"","")

DICT.PRICE.CLASS
SUBROUTINE (SELL.PRC)

This subroutine tries to get a Price for a Product and Class, and is used by the PRICE.CLASS I-
Descriptor off the Product File.

DICT.PRICE.PER

SUBROUTINE (PER.QTY,PN)

This routine will display the price per the unit of measure listed on the items price sheet. You
can pass in the PN on the arguments.

DICT.PROD.STATUS

This routine will display the description of the product status

DICT.PROD.WGHT
SUBROUTINE (UNIT.WGHT,PN,PER)

DICT.PRODUCT.LOAD.KEY.ALT
SUBROUTINE (FLNM,REC.ID,RPL.STR,UPD.ERR,PASSER)

This routine will load the first n words of the Product description to the Product Keywords and
Alt Desc fields.

NOTE: Designed for (S)et option only.
Format of RPL.STR - "W#" or "#" where # is the number of words
to be taken from the front of the description field.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 283

&

ACTIVANT

FLNM - File that we are updating
REC.ID - Record ID that needs updated
RPL.STR - Description after update
UPD.ERR - 1 - File not found

2 - Record not found
PASSER - Reserved for future use

DICT.PRODUCT.UPD.DESC
SUBROUTINE (FLNM,REC.ID,RPL.STR,UPD.ERR,PASSER)

This routine will update the description in the Product File.
It is used with the replacement string all in double quotes and Designed for (S)et option only.

Optl - "W3,[WHITE]=[WHT] ... starts with the 3rd word in first value of description, and then
moves everything from the 3rd word on in the 1st value along with the remaining values to the
conversion of WHITE to WHT. Truncating 1st value before Word 3 and putting conv the
following value positions.

Opt2 - "[WHITE]=[WHT]" ... does not touch 1st value position.
The remaining values are checked and all occurrences of the word
WHITE is exchanged for WHT.

FLNM = File that we are updating
REC.ID = Record ID that needs updated
RPL.STR = Description after update
UPD.ERR =1 - File not found

2 - Record not found
PASSER = Reserved for future use

DICT.PSUB.CALC.PRICE
This routine will calculate the best price when using this from the PSUB file. Looks like a way
to compare the calculated price with an overridden price.

DICT.PSUB.COST
SUBROUTINE (VAL,OID,INVN,LDID,BASE)

Subroutine to be used in I-type dictionaries to return the cost of a transaction from the LD array
associated to the LEDGER. This was written to be used on the PSUB file.

VAL -[OUT] - Cost determined by program using BASE number.
OID - [IN] - Ledger record ID (key)

INVN - [IN] - Invoice number

LDID - [IN] - Line item number

BASE - [IN] - Which field in the LD array to get the cost from.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 284

&

ACTIVANT
DICT.PSUB.LEDL.INFO
SUBROUTINE (VAL,PSUB.ID,WORD)
This routine will go out to the Ledger log and pull back occurrences you specify. You must
enter the word to search on.

DICT.PSUB.PRT.STAT

Display the print status of a transaction. This routine works from the PSUB file.

DICT.TAG.GET.VAL
SUBROUTINE (VAL,ATTB)
This routine is used to pull back the tagged information on the PSUB file.

DICT.TRANS.BR
SUBROUTINE (VAL,FLNM,REC.ID,DICT.ID,TERR.POS)

DICT.VEN.NOTES

SUBROUTINE (NTS,NOTE.ID)

This routine will pull back the vendor notes from the ENTITY.NOTES file. Supply the Note id
you want to display.

DICT.WHSE.OP.QUEUE.IMREPL
SUBROUTINE (VALUE,COMPLETED)
Program Description
This routine can be used by dictionaries on the WHSE.OP.QUEUE file
in order to select replenishments assigned to a particular user.
Parameter Definition
VALUE - The value of the dictionary for the current (OUT)
- record.
COMPLETED - Boolean, whether or not completed replenishment (IN)
- should be included.

DICT.X.AXIS.DESC

This routine will display the description of the X axis from your matrix file.
Customer, Customer Type, Class, Quote etc.

DICT.Y.AXIS.DESC

This routine will display the description of the Y axis from your matrix file. Group or Product.

DICT.Z.AXIS.DESC

This routine will display the Z axis, such as territory and branch specific information.

DICT.ZERO.HISTORY
Used on the product file, this routine will display a “1” if a product does not have any history for
a branch defined.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 285

&

ACTIVANT
DICT.ZERO.ONHAND

Used on the product file, this routine will display a “1” if a product does not have an on-hand for
a branch defined.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 286

&

ACTIVANT
DICT.ZERO.ORDERS

Used on the product file, this routine will display a “1” if a product does not have any open
orders for a branch defined.

Release 8 UniVerse Data Structures with Report Writer and Mass Load Page 287

